Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111)

Bauer U, Mohr S, Döpper T, Bachmann P, Späth F, Düll F, Schwarz M, Brummel O, Fromm L, Pinkert U, Görling A, Hirsch A, Bachmann J, Steinrück HP, Libuda J, Papp C (2017)


Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2017

Journal

Publisher: Wiley-VCH Verlag

Book Volume: 23

Pages Range: 1613-1622

Journal Issue: 7

DOI: 10.1002/chem.201604443

Abstract

We have investigated the surface chemistry of the polycyclic valence-isomer pair norbornadiene (NBD) and quadricyclane (QC) on Pt(111). The NBD/QC system is considered to be a prototype for energy storage in strained organic compounds. By using a multimethod approach, including UV photoelectron, high-resolution X-ray photoelectron, and IR reflection-absorption spectroscopic analysis and DFT calculations, we could unambiguously identify and differentiate between the two molecules in the multilayer phase, which implies that the energy-loaded QC molecule is stable in this state. Upon adsorption in the (sub)monolayer regime, the different spectroscopies yielded identical spectra for NBD and QC at 125 and 160K, when multilayer desorption takes place. This behavior is explained by a rapid cycloreversion of QC to NBD upon contact with the Pt surface. The NBD adsorbs in a η:η geometry with an agostic Pt-H interaction of the bridgehead CH subunit and the surface. Strong spectral changes are observed between 190 and 220K because the hydrogen atom that forms the agostic bond is broke. This reaction yields a norbornadienyl intermediate species that is stable up to approximately 380K. At higher temperatures, the molecule dehydrogenates and decomposes into smaller carbonaceous fragments.

Authors with CRIS profile

Additional Organisation(s)

How to cite

APA:

Bauer, U., Mohr, S., Döpper, T., Bachmann, P., Späth, F., Düll, F.,... Papp, C. (2017). Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111). Chemistry - A European Journal, 23(7), 1613-1622. https://dx.doi.org/10.1002/chem.201604443

MLA:

Bauer, Udo, et al. "Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111)." Chemistry - A European Journal 23.7 (2017): 1613-1622.

BibTeX: Download