Structural mechanics process simulation of linear coil winding

Authored book
(Volume of book series)


Publication Details

Author(s): Bönig J, Bickel B, Ebenhöch M, Spahr M, Fischer C, Franke J
Publisher: Trans Tech Publications Ltd
Publication year: 2014
Volume: 1018
Pages range: 47-54
ISBN: 9783038352457


Abstract


Slowly but steadily, more and more electrical vehicles push onto the consumer market. To produce electrical engines cost efficiently, in first-class quality and in sufficient quantity, it is indispensable to understand the process of winding. The prediction of the wire behaviour is one of the key challenges of coil winding. It is sophisticated and sometimes impossible to measure relevant process parameters (like the wire pull force after wire guide, the wire stress after deformation) in experiments in order to be able to investigate the process in detail. Therefore, a detailed model is built to simulate the wire behaviour during linear winding process. The finite element based simulation tool ANSYS Workbench® serves as the static structural component tool. ANSYS provides comprehensive possibilities in structural mechanics and it is possible to simulate thermal and electrical physics for future work (Co-simulation within one tool). To represent the high dynamic process of winding within this simulation, some first adaptions have to be made. This means, that dynamic influences such as rotational speed or acceleration of the coil body are neglected. Within static structural analysis, the given boundary conditions are applied to the model. The material properties of wires under scrutiny are validated by a tensile test and by the values of datasheets. In order to achieve the best convergence, different contact algorithms are selected for each individual contact behaviour. Furthermore, some adjustments to the mesh are necessary to gain significant results. State of the art in coil winding is an experimental procedure, which delivers good process parameters and, thus, expertise in winding technology. However, there are a lot of different, interacting parameters, which have to be optimized in terms of boundary conditions. The simulation model of the winding process, where varying parameters can be optimized pertaining to the optimal winding result, calls for extensive research in this field. The generated model enables users not only to influence the process parameters but also to modify the geometry of the winding body. To make the simulation scientifically sound, it is validated by experiments.



FAU Authors / FAU Editors

Bickel, Benjamin
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik
Bönig, Jochen
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik
Fischer, Christian
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik
Franke, Jörg Prof. Dr.-Ing.
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik
Spahr, Michael
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik


How to cite

APA:
Bönig, J., Bickel, B., Ebenhöch, M., Spahr, M., Fischer, C., & Franke, J. (2014). Structural mechanics process simulation of linear coil winding. Trans Tech Publications Ltd.

MLA:
Bönig, Jochen, et al. Structural mechanics process simulation of linear coil winding. Trans Tech Publications Ltd, 2014.

BibTeX: 

Last updated on 2018-02-12 at 20:50