Microstructural evolution during deformation of tin dioxide nanoparticles in a comminution process

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Armstrong P, Knieke C, Mackovic M, Frank G, Hartmaier A, Göken M, Peukert W, Mackovic M
Zeitschrift: Acta Materialia
Verlag: Elsevier
Jahr der Veröffentlichung: 2009
Band: 57
Seitenbereich: 3060-3071
ISSN: 1359-6454
Sprache: Englisch


Abstract


Nanoparticles can be produced by wet grinding in stirred media mills if agglomeration is prevented by stabilization of the particles. Since the fracture mechanisms at the lower nanoscale are not yet understood, we studied the evolution of the microstructure within tin dioxide particles. Electrostatic stabilization allows the formation of tin dioxide with a mean particle size of 25 nm as measured by dynamic light scattering. High-resolution transmission electron microscopy (HRTEM) images show particles well below 10 nm and mean crystallite sizes of 9 nm were obtained from X-ray diffraction by applying the Rietveld refinement method. Additionally, TEM and HRTEM analyses were conducted to gain detailed insight into the microstructural effects governing the grinding process. Microscopy revealed surprisingly rich phenomena including the formation of shear bands, twinning and stacking faults that directly affect the grinding behavior. Interestingly the ceramic nanoparticles showed not only fracture patterns expected from brittle fracture but also many traces of plastic deformation. For comparison the uniaxial compression of particles up to 30 nm in diameter was simulated using molecular dynamics. The simulated particles shared microstructural details with the real samples, most importantly the shear bands which lead to significant plastic deformation. The internal microstructure produced during multiple particle stressing events in the mill and also observed in the simulations is directly linked to the fracture mechanism and the experimentally observed grinding limit. © 2009 Acta Materialia Inc.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Armstrong, Patrick
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Frank, Gerhard Dr.
Lehrstuhl für Werkstoffwissenschaften (Biomaterialien)
Göken, Mathias Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften)
Mackovic, Mirza Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Biomaterialien)
Mackovic, Mirza Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Peukert, Wolfgang Prof. Dr.-Ing.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)


Einrichtungen weiterer Autorinnen und Autoren

Ruhr-Universität Bochum (RUB)


Forschungsbereiche

A1 Functional Particle Systems
Exzellenz-Cluster Engineering of Advanced Materials
A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Armstrong, P., Knieke, C., Mackovic, M., Frank, G., Hartmaier, A., Göken, M.,... Mackovic, M. (2009). Microstructural evolution during deformation of tin dioxide nanoparticles in a comminution process. Acta Materialia, 57, 3060-3071. https://dx.doi.org/10.1016/j.actamat.2009.02.049

MLA:
Armstrong, Patrick, et al. "Microstructural evolution during deformation of tin dioxide nanoparticles in a comminution process." Acta Materialia 57 (2009): 3060-3071.

BibTeX: 

Zuletzt aktualisiert 2019-29-05 um 08:41