We show that the orientation and morphology of bedforms occurring on top of Pluto’s smooth ice coats are consistent with an aeolian origin under conditions of unidirectional flow. From scaling relations for dune size as a function of attributes of atmosphere and sediments, we find that the average diameter of the granular particles constituting such bedforms — assuming an aeolian origin — lies within the range 600 μm< d < 750 μm. Our findings show that, owing to the effect of hysteresis in the minimal threshold wind velocity for saltation, dune migration on Pluto can occur under wind speeds that are common to Earth and Mars.