Particle Swarm Optimization Almost Surely Finds Local Optima

Schmitt M, Wanka R (2013)


Publication Type: Conference contribution

Publication year: 2013

Journal

Publisher: Elsevier

Edited Volumes: Theoretical Computer Science

Pages Range: 1629-1636

Conference Proceedings Title: Proc. 15th Genetic and Evolutionary Computation Conference

Event location: Amsterdam NL

DOI: 10.1145/2463372.2463563

Abstract

Particle swarm optimization (PSO) is a popular nature-inspired meta-heuristic for solving continuous optimization problems. Although this technique is widely used, up to now only some partial aspects of the method have been formally investigated. In particular, while it is well-studied how to let the swarm converge to a single point in the search space, no general theoretical statements about this point or on the best position any particle has found have been known. For a very general class of objective functions, we provide for the first time results about the quality of the solution found. We show that a slightly adapted PSO almost surely finds a local optimum. To do so, we investigate the newly defined . potential of the swarm. The potential drops when the swarm approaches the point of convergence, but increases if the swarm remains close to a point that is not a local optimum, meaning that the swarm charges potential and continues its movement.

Authors with CRIS profile

Related research project(s)

How to cite

APA:

Schmitt, M., & Wanka, R. (2013). Particle Swarm Optimization Almost Surely Finds Local Optima. In Proc. 15th Genetic and Evolutionary Computation Conference (pp. 1629-1636). Amsterdam, NL: Elsevier.

MLA:

Schmitt, Manuel, and Rolf Wanka. "Particle Swarm Optimization Almost Surely Finds Local Optima." Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Amsterdam Elsevier, 2013. 1629-1636.

BibTeX: Download