Knauf A (2015)
Publication Type: Journal article, Original article
Publication year: 2015
Publisher: Indiana University Mathematics Journal
Book Volume: 64
Pages Range: 1465--1512
Journal Issue: 5
DOI: 10.1512/iumj.2015.64.5655
With the help of the representation of SL(2,Z) on the rank two free module over the integer adeles, we define the transition operator of a Markov chain. The real component of its spectrum exhibits a gap, whereas the non-real component forms a circle of radius 1/\sqrt{2}.
APA:
Knauf, A. (2015). The spectrum of an adelic Markov operator. Indiana University Mathematics Journal, 64(5), 1465--1512. https://doi.org/10.1512/iumj.2015.64.5655
MLA:
Knauf, Andreas. "The spectrum of an adelic Markov operator." Indiana University Mathematics Journal 64.5 (2015): 1465--1512.
BibTeX: Download