Precision estimation of source dimensions from higher-order intensity correlations

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autor(en): Pearce ME, Mehringer T, von Zanthier J, Kok P
Zeitschrift: Physical Review A
Verlag: American Physical Society
Jahr der Veröffentlichung: 2015
Band: 92
Heftnummer: 4
ISSN: 1050-2947


An important topic of interest in imaging is the construction of protocols that are not diffraction limited. This can be achieved in a variety of ways, including classical superresolution techniques or quantum entanglement-based protocols. Here, we consider superresolving imaging in the far field using higher-order intensity correlations. We show that third-and fourth-order correlations can improve upon the first-and second-order correlations that are traditionally used in classical optics and Hanbury Brown-Twiss-type experiments. The improvement is achieved entirely by post-processing of the data. As a demonstrator, we simulate the far field intensity distribution of a circular aperture that emits thermal light and use maximum likelihood estimation to determine the radius of the aperture. We compare the achieved precision to the Cramer-Rao lower bound and find that the variance of measurements for the third-and fourth-order correlation functions are indeed closer to the Cramer-Rao bound than that of the second-order correlation function. The method presented here is general, and can be used for all kinds of incoherent emitters, geometries, and types of noise.

FAU-Autoren / FAU-Herausgeber

Mehringer, Thomas
Institut für Optik, Information und Photonik
von Zanthier, Joachim Prof. Dr.
Professur für Experimentalphysik

Autor(en) der externen Einrichtung(en)
University of Sheffield


Pearce, M.E., Mehringer, T., von Zanthier, J., & Kok, P. (2015). Precision estimation of source dimensions from higher-order intensity correlations. Physical Review A, 92(4).

Pearce, M. E., et al. "Precision estimation of source dimensions from higher-order intensity correlations." Physical Review A 92.4 (2015).


Zuletzt aktualisiert 2018-10-08 um 05:40