Regularized solution of LCP problems with application to rigid body dynamics

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autor(en): Popa C, Preclik T, Rüde U
Zeitschrift: Numerical Algorithms
Verlag: Springer Verlag (Germany)
Jahr der Veröffentlichung: 2014
Seitenbereich: 1-12
ISSN: 1017-1398


Abstract

For Linear Complementarity Problems (LCP) with a positive semidefinite matrix M, iterative solvers can be derived by a process of regularization. In [ 3 ] the initial LCP is replaced by a sequence of positive definite ones, with the matrices M + αI. Here we analyse a generalization of this method where the identity I is replaced by a positive definite diagonal matrix D. We prove that the sequence of approximations so defined converges to the minimal D-norm solution of the initial LCP. This extension opens the possibility for interesting applications in the field of rigid multibody dynamics. © 2014 Springer Science+Business Media New York.


FAU-Autoren / FAU-Herausgeber

Preclik, Tobias Dr.-Ing.
Lehrstuhl für Informatik 10 (Systemsimulation)
Rüde, Ulrich Prof. Dr.
Lehrstuhl für Informatik 10 (Systemsimulation)


Zitierweisen

APA:
Popa, C., Preclik, T., & Rüde, U. (2014). Regularized solution of LCP problems with application to rigid body dynamics. Numerical Algorithms, 1-12. https://dx.doi.org/10.1007/s11075-014-9886-0

MLA:
Popa, Constantin, Tobias Preclik, and Ulrich Rüde. "Regularized solution of LCP problems with application to rigid body dynamics." Numerical Algorithms (2014): 1-12.

BibTeX: 

Zuletzt aktualisiert 2018-19-09 um 14:38