Bose–Einstein condensation on a microelectronic chip

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autor(en): Hänsel W, Hommelhoff P, Hänsch T, Reichel J
Zeitschrift: Nature
Verlag: Nature Publishing Group
Jahr der Veröffentlichung: 2001
Band: 413
Seitenbereich: 498-501
ISSN: 0028-0836


Although Bose-Einstein condensates of ultracold atoms have been experimentally realizable for several years, their formation and manipulation still impose considerable technical challenges. An all-optical technique that enables faster production of Bose-Einstein condensates was recently reported. Here we demonstrate that the formation of a condensate can be greatly simplified using a microscopic magnetic trap on a chip. We achieve Bose-Einstein condensation inside the single vapour cell of a magneto-optical trap in as little as 700 ms - more than a factor of ten faster than typical experiments, and a factor of three faster than the all-optical technique. A coherent matter wave is emitted normal to the chip surface when the trapped atoms are released into free fall; alternatively, we couple the condensate into an 'atomic conveyor belt', which is used to transport the condensed cloud non-destructively over a macroscopic distance parallel to the chip surface. The possibility of manipulating laser-like coherent matter waves with such an integrated atom-optical system holds promise for applications in interferometry, holography, microscopy, atom lithography and quantum information processing.

FAU-Autoren / FAU-Herausgeber

Hommelhoff, Peter Prof. Dr.
Lehrstuhl für Laserphysik

Autor(en) der externen Einrichtung(en)
Max-Planck-Institute of Quantum Optics (MPQ) / Max-Planck-Institut für Quantenoptik
Menlo Systems GmbH


Hänsel, W., Hommelhoff, P., Hänsch, T., & Reichel, J. (2001). Bose–Einstein condensation on a microelectronic chip. Nature, 413, 498-501.

Hänsel, Wolfgang, et al. "Bose–Einstein condensation on a microelectronic chip." Nature 413 (2001): 498-501.


Zuletzt aktualisiert 2018-07-08 um 16:24