Mathematical modeling and physical reality in noncovalent interactions

Politzer P, Murray JS, Clark T (2015)


Publication Status: Published

Publication Type: Journal article

Publication year: 2015

Journal

Publisher: Springer Verlag (Germany)

Book Volume: 21

Journal Issue: 3

DOI: 10.1007/s00894-015-2585-5

Abstract

The Hellmann-Feynman theorem provides a straightforward interpretation of noncovalent bonding in terms of Coulombic interactions, which encompass polarization (and accordingly include dispersion). Exchange, Pauli repulsion, orbitals, etc., are part of the mathematics of obtaining the system's wave function and subsequently its electronic density. They do not correspond to physical forces. Charge transfer, in the context of noncovalent interactions, is equivalent to polarization. The key point is that mathematical models must not be confused with physical reality.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Politzer, P., Murray, J.S., & Clark, T. (2015). Mathematical modeling and physical reality in noncovalent interactions. Journal of Molecular Modeling, 21(3). https://dx.doi.org/10.1007/s00894-015-2585-5

MLA:

Politzer, Peter, Jane S. Murray, and Timothy Clark. "Mathematical modeling and physical reality in noncovalent interactions." Journal of Molecular Modeling 21.3 (2015).

BibTeX: Download