Piazza A, Kröckel P, Bodendorf F (2017)
Publication Language: English
Publication Type: Conference contribution, Conference Contribution
Publication year: 2017
Publisher: ACM
City/Town: New York, NY, USA
Pages Range: 1234-1240
Conference Proceedings Title: Proceedings of the International Conference on Web Intelligence
Event location: Leipzig, Germany
ISBN: 978-1-4503-4951-2
Emotions have a significant impact on the purchasing process. Due to novel affective computing approaches, affective information of users can be acquired in implicit and therefore non-intrusive manner. Recent research in the field of recommender systems indicates that the incorporation of affective user information in the prediction model has a positive impact on the recommender systems accuracy. Existing research mainly focused on product recommendations in the movie anfd music domain. Our paper investigates the impact of affective emotions on fashion products, which is one of the largest consumer industries. We integrate the users' mood and their emotion in the prediction model, and the results are compared to the baseline model using rating data only. For this, we generate a dataset with 337 participants, 64 products, and 10816 ratings. We determine the mood information using the PANAS questionnaire, and the emotion by using the SAM self-assessment method. The affective information is integrated leveraging Factorization Machines. The evaluation of the offline experiments reveals that in new item cold-start scenarios the mood information has a positive impact on the prediction accuracy, whereas the emotion information has a negative impact.
APA:
Piazza, A., Kröckel, P., & Bodendorf, F. (2017). Emotions and fashion recommendations: evaluating the predictive power of affective information for the prediction of fashion product preferences in cold-start scenarios. In Proceedings of the International Conference on Web Intelligence (pp. 1234-1240). Leipzig, Germany, DE: New York, NY, USA: ACM.
MLA:
Piazza, Alexander, Pavlina Kröckel, and Freimut Bodendorf. "Emotions and fashion recommendations: evaluating the predictive power of affective information for the prediction of fashion product preferences in cold-start scenarios." Proceedings of the International Workshop on Web Personalization, Recommender Systems and Social Media at the International Conference on Web Intelligence, Leipzig, Germany New York, NY, USA: ACM, 2017. 1234-1240.
BibTeX: Download