A Geometrically Nonlinear FE Approach for the Simulation of Strong and Weak Discontinuities

Mergheim J, Steinmann P (2006)


Publication Type: Journal article

Publication year: 2006

Journal

Publisher: Elsevier

Book Volume: 195

Pages Range: 5037-5052

DOI: 10.1016/j.cma.2005.05.057

Abstract

In the present contribution a discontinuous finite element method for the computational modelling of strong and weak discontinuities in geometrically nonlinear elasticity is introduced. The location of the interface is independent of the mesh structure and therefore discontinuous elements are introduced, to capture the jump in the deformation map or its gradient respectively. To model strong discontinuities the cohesive crack concept is adopted. The inelastic material behaviour is covered by a cohesive constitutive law, which associates the cohesive tractions, acting on the crack surfaces, with the jump in the deformation map. In the case of weak discontinuities an extended Nitsche's method is applied, which ensures the continuity of the deformation map in a weak sense. The applicability of the proposed method is highlighted by means of numerical examples, dealing with both crack propagation and material interfaces. © 2005 Elsevier B.V. All rights reserved.

Authors with CRIS profile

How to cite

APA:

Mergheim, J., & Steinmann, P. (2006). A Geometrically Nonlinear FE Approach for the Simulation of Strong and Weak Discontinuities. Computer Methods in Applied Mechanics and Engineering, 195, 5037-5052. https://doi.org/10.1016/j.cma.2005.05.057

MLA:

Mergheim, Julia, and Paul Steinmann. "A Geometrically Nonlinear FE Approach for the Simulation of Strong and Weak Discontinuities." Computer Methods in Applied Mechanics and Engineering 195 (2006): 5037-5052.

BibTeX: Download