Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series

Hoppe E, Körzdorfer G, Würfl T, Wetzl J, Lugauer F, Pfeuffer J, Maier A (2017)


Publication Type: Conference contribution, Original article

Publication year: 2017

Publisher: IOS Press

Edited Volumes: Studies in Health Technology and Informatics

Series: Studies in Health Technology and Informatics

City/Town: IOS Press

Book Volume: 243

Pages Range: 202-206

Edition: 1

Conference Proceedings Title: German Medical Data Sciences: Visions and Bridges

Event location: Oldenburg

Journal Issue: 1

ISBN: 978-1-61499-807-5

URI: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2017/Hoppe17-DLF.pdf

DOI: 10.3233/978-1-61499-808-2-202

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Hoppe, E., Körzdorfer, G., Würfl, T., Wetzl, J., Lugauer, F., Pfeuffer, J., & Maier, A. (2017). Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series. In German Medical Data Sciences: Visions and Bridges (pp. 202-206). Oldenburg: IOS Press: IOS Press.

MLA:

Hoppe, Elisabeth, et al. "Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series." Proceedings of the 62. Jahrestagung der GMDS, Oldenburg IOS Press: IOS Press, 2017. 202-206.

BibTeX: Download