Hoppe E, Körzdorfer G, Würfl T, Wetzl J, Lugauer F, Pfeuffer J, Maier A (2017)
Publication Type: Conference contribution, Original article
Publication year: 2017
Publisher: IOS Press
Edited Volumes: Studies in Health Technology and Informatics
Series: Studies in Health Technology and Informatics
City/Town: IOS Press
Book Volume: 243
Pages Range: 202-206
Edition: 1
Conference Proceedings Title: German Medical Data Sciences: Visions and Bridges
Event location: Oldenburg
Journal Issue: 1
ISBN: 978-1-61499-807-5
URI: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2017/Hoppe17-DLF.pdf
DOI: 10.3233/978-1-61499-808-2-202
APA:
Hoppe, E., Körzdorfer, G., Würfl, T., Wetzl, J., Lugauer, F., Pfeuffer, J., & Maier, A. (2017). Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series. In German Medical Data Sciences: Visions and Bridges (pp. 202-206). Oldenburg: IOS Press: IOS Press.
MLA:
Hoppe, Elisabeth, et al. "Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series." Proceedings of the 62. Jahrestagung der GMDS, Oldenburg IOS Press: IOS Press, 2017. 202-206.
BibTeX: Download