Geimer T, Birlutiu A, Unberath M, Taubmann O, Bert C, Maier A (2017)
Publication Language: German
Publication Type: Conference contribution
Publication year: 2017
Publisher: Springer
Edited Volumes: Informatik aktuell
City/Town: Heidelberg, Berlin
Pages Range: 155-160
Conference Proceedings Title: Bildverarbeitung für die Medizin 2017 - Algorithmen - Systeme - Anwendungen
ISBN: 978-3-662-54344-3
URI: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2017/Geimer17-AKR.pdf
DOI: 10.1007/978-3-662-54345-0_38
This paper discusses a kernel ridge regression (KRR) model
for motion estimation in radiotherapy. Using KRR, dense internal motion
fields are estimated from high-dimensional surrogates without the need
for prior dimensionality reduction. We compare the proposed model to a
related approach with dimensionality reduction in the form of principal
component analysis and principle component regression. Evaluation was
performed in a simulation study based on nine 4D CT patient data sets
achieving a mean estimation error of 0.84 ± 0.21 mm for our approach.
APA:
Geimer, T., Birlutiu, A., Unberath, M., Taubmann, O., Bert, C., & Maier, A. (2017). A Kernel Ridge Regression Model for Respiratory Motion Estimation in Radiotherapy. In Maier-Hein K H, Deserno Th, Handels H, Tolxdorff Th (Hrg.), Bildverarbeitung für die Medizin 2017 - Algorithmen - Systeme - Anwendungen (S. 155-160). Heidelberg, DE: Heidelberg, Berlin: Springer.
MLA:
Geimer, Tobias, et al. "A Kernel Ridge Regression Model for Respiratory Motion Estimation in Radiotherapy." Tagungsband Bildverarbeitung für die Medizin 2017, Heidelberg Hrg. Maier-Hein K H, Deserno Th, Handels H, Tolxdorff Th, Heidelberg, Berlin: Springer, 2017. 155-160.
BibTeX: Download