Thermomechanical behaviour of turbocharger compressor wheels

Beitrag bei einer Tagung
(Konferenzbeitrag)


Details zur Publikation

Autor(en): Makarenko I, Lehmayr B, Bogner M, Klaus M, Singer R
Jahr der Veröffentlichung: 2012
Band: 4
Seitenbereich: 1089-1098
ISBN: 9780791844700
Sprache: Englisch


Abstract


Compressor wheels on exhaust turbochargers in car and truck applications are highly stressed components. During the development of new compressor wheels the main focus is to design reliable parts with a reasonable lifetime as well as good efficiencies and low inertia providing improved engine efficiency and better dynamic engine performance. In order to fulfill the exceptional requirements on the thermodynamic characteristics of the turbocharger the material of the compressor wheel underlies high mechanical and thermal loads. Centrifugal compressor wheels made of an Al-Cu-Mg precipitation hardened wrought alloy (2618-T6) experience low cycle fatigue loading which results from centrifugal forces and temperature loadings. The development of compressor wheels requires exact methods to predict the mechanical and thermal loads and their influence on the highly stressed regions of the product. The assessment of relevant loadings from static FEA calculations is deficient. Alternatively a constitutive material model for the used aluminum alloy is implemented in FEA simulations. The constitutive material model of Chaboche type with modifications proposed by Jiang makes it possible to describe the time and temperature dependent deformation behavior of the whole compressor wheel. Especially the effects of cyclic plasticity including relaxation and creep can be considered consistently. Boundary conditions on the compressor wheel including wall heat transfer coefficients and wall adjacent temperatures are provided by static heat transfer calculations. The boundary conditions are necessary for transient heat transfer calculations in FEA. In this paper the temperature distribution on the centrifugal compressor wheel for different operating points defined by rotational velocity and compressor inlet temperature is presented. The boundary conditions for transient heat transfer calculations in FEA are provided by conjugate heat transfer calculations for maximal power and idle speed of the turbocharger. The results of this method show time dependent temperature distribution on the compressor wheel under thermal shock conditions. The FEA calculations with boundary conditions from the transient heat transfer calculations describe the deformation behavior of the centrifugal compressor wheel during sequent thermal shock cycles. The thermomechanical behavior during different operating points and load cycles of the turbocharger is investigated. Furthermore relaxation and creep effects on highly stressed regions of the compressor wheel during full power application are presented. Copyright © 2012 by ASME.



FAU-Autoren / FAU-Herausgeber

Singer, Robert Prof. Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


Zitierweisen

APA:
Makarenko, I., Lehmayr, B., Bogner, M., Klaus, M., & Singer, R. (2012). Thermomechanical behaviour of turbocharger compressor wheels. (pp. 1089-1098). Copenhagen.

MLA:
Makarenko, Igor, et al. "Thermomechanical behaviour of turbocharger compressor wheels." Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012, Copenhagen 2012. 1089-1098.

BibTeX: 

Zuletzt aktualisiert 2018-11-12 um 13:50