Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells

Journal article
(Original article)


Publication Details

Author(s): Hou Y, Scheiner S, Tang X, Gasparini N, Richter M, Li N, Schweizer P, Chen S, Chen H, Ramírez Quiroz CO, Du X, Matt G, Osvet A, Spiecker E, Fink R, Hirsch A, Halik M, Brabec C
Journal: Advanced Materials Interfaces
Publication year: 2017
ISSN: 2196-7350
Language: English


Abstract


Thin-film solar cell based on hybrid perovskites shows excellent light-to-power conversion efficiencies exceeding 22%. However, the mixed ionic-electronic semiconductor hybrid perovskite exhibits many unusual properties such as slow photocurrent instabilities, hysteresis behavior, and low-frequency giant capacitance, which still question us so far. This study presents a direct surface functionalization of transparent conductive oxide electrode with an ultrathin ≈2 nm thick phosphonic acid based mixed C60/organic self-assembled monolayer (SAM) that significantly reduces hysteresis. Moreover, due to the strong phosphonates bonds with indium tin oxide (ITO) substrates, the SAM/ITO substrates also exhibit an excellent recyclability merit from the perspective of cost effectiveness. Impedance studies find the fingerprint of an ion-based diffusion process in the millisecond to second regime for TiO2-based devices, which, however, is not observed for SAM-based devices at these low frequencies. It is experimentally demonstrated that ion migration can be considerably suppressed by carefully engineering SAM interfaces, which allows effectively suppressing hysteresis and unstable diode behavior in the frequency regime between ≈1 and 100 Hz. It is suggested that a reduced density of ionic defects in combination with the absence of charge carrier accumulation at the interface is the main physical origin for the reduced hysteresis.



FAU Authors / FAU Editors

Brabec, Christoph Prof. Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Chen, Haiwei
Institute Materials for Electronics and Energy Technology (i-MEET)
Chen, Shi
Institute Materials for Electronics and Energy Technology (i-MEET)
Du, Xiaoyan
Lehrstuhl für Physikalische Chemie II
Fink, Rainer Prof. Dr.
Professur für Physikalische Chemie
Gasparini, Nicola
Institute Materials for Electronics and Energy Technology (i-MEET)
Halik, Marcus Prof. Dr.
Professur für Werkstoffwissenschaften (Polymerwerkstoffe)
Hirsch, Andreas Prof. Dr.
Lehrstuhl für Organische Chemie II
Hou, Yi
Institute Materials for Electronics and Energy Technology (i-MEET)
Li, Ning Dr.-Ing.
Institute Materials for Electronics and Energy Technology (i-MEET)
Matt, Gebhard Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Osvet, Andres Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Ramírez Quiroz, César Omar
Institute Materials for Electronics and Energy Technology (i-MEET)
Richter, Moses
Institute Materials for Electronics and Energy Technology (i-MEET)
Scheiner, Simon
Professur für Werkstoffwissenschaften (Polymerwerkstoffe)
Schweizer, Peter
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Tang, Xiaofeng
Institute Materials for Electronics and Energy Technology (i-MEET)


Additional Organisation
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden
Exzellenz-Cluster Engineering of Advanced Materials
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)


How to cite

APA:
Hou, Y., Scheiner, S., Tang, X., Gasparini, N., Richter, M., Li, N.,... Brabec, C. (2017). Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces. https://dx.doi.org/10.1002/admi.201700007

MLA:
Hou, Yi, et al. "Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells." Advanced Materials Interfaces (2017).

BibTeX: 

Last updated on 2019-29-05 at 08:38