Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autor(en): Unterweger H, Tietze R, Janko C, Zaloga J, Lyer S, Dürr S, Taccardi N, Goudouri OM, Hoppe A, Eberbeck D, Schubert DW, Boccaccini AR, Alexiou C
Zeitschrift: International Journal of Nanomedicine
Verlag: Dove Medical Press
Jahr der Veröffentlichung: 2014
Band: 9
Heftnummer: 1
Seitenbereich: 3659-3676
ISSN: 1176-9114


Abstract


A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs) bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 μg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta potential of -45 mV. No signs of particle precipitation were observed over a period of at least 8 weeks. Analysis of drug-release kinetics using the dialysis tube method revealed that these were driven by inverse ligand substitution and diffusion through the polymer shell as well as enzymatic degradation of hyaluronic acid. The biological activity of the particles was investigated in a nonadherent Jurkat cell line using flow cytometry. Further, cell viability and proliferation was examined in an adherent PC-3 cell line using xCELLigence analysis. Both tests demonstrated that particles without cisplatin were biocompatible with these cells, whereas particles with the drug induced apoptosis in a dose-dependent manner, with secondary necrosis after prolonged incubation. In conclusion, combination of dextran-coated SPIONs with hyaluronic acid and cisplatin represents a promising approach for magnetic drug targeting in the treatment of cancer.



FAU-Autoren / FAU-Herausgeber

Alexiou, Christoph Prof. Dr.
Professur für Nanomedizin
Boccaccini, Aldo R. Prof. Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Biomaterialien)
Goudouri, Ourania Menti Dr.
Lehrstuhl für Werkstoffwissenschaften (Biomaterialien)
Hoppe, Alexander
Lehrstuhl für Werkstoffwissenschaften (Biomaterialien)
Janko, Christina Dr. rer. nat.
Lehrstuhl für Genetik
Schubert, Dirk W. Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Polymerwerkstoffe)
Taccardi, Nicola Dr.
Lehrstuhl für Chemische Reaktionstechnik
Unterweger, Harald Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Biomaterialien)
Zaloga, Jan Dr. rer. nat.
Hals-Nasen-Ohren-Klinik - Kopf- und Halschirurgie


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Autor(en) der externen Einrichtung(en)
Physikalisch-Technische Bundesanstalt (PTB)


Zitierweisen

APA:
Unterweger, H., Tietze, R., Janko, C., Zaloga, J., Lyer, S., Dürr, S.,... Alexiou, C. (2014). Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. International Journal of Nanomedicine, 9(1), 3659-3676. https://dx.doi.org/10.2147/IJN.S63433

MLA:
Unterweger, Harald, et al. "Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery." International Journal of Nanomedicine 9.1 (2014): 3659-3676.

BibTeX: 

Zuletzt aktualisiert 2018-06-08 um 15:53