Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Göbelt M, Keding R, Schmitt SW, Hoffmann B, Jaeckle S, Latzel M, Radmilovic VV, Radmilovic VR, Spiecker E, Christiansen S, Hoffmann B
Zeitschrift: Nano Energy
Verlag: Elsevier BV
Jahr der Veröffentlichung: 2015
Band: 16
Seitenbereich: 196-206
ISSN: 2211-2855


Abstract


We report on the development of a novel nano-composite transparent electrode material to be used in various energy applications e.g. as contacts for solar cells, composed of a wet-chemically synthesized silver nanowire (AgNW) network encapsulated in a transparent conductive oxide (TCO) which was deposited with nano-scale precision by atomic layer deposition (ALD). The AgNWs form a random network on a substrate of choice when being drop casted. ALD encapsulation of AgNWs guarantees a conformal and thickness controlled coating of the wires e.g. by the selected aluminum doped zinc oxide (AZO). Annealing of the AgNWs prior to ALD coating, yield a local sintering of AgNWs at their points of intersection, which improves the conductivity of the composite electrodes by reducing their sheet resistance. To demonstrate the performance of these AgNW/AZO composite transparent electrodes, they were used as a top electrode on wafer-based silicon (Si) - solar cells. A novel combination of scanning electron microscopy and image processing is used to determine the degree of percolation of the AgNWs on large areas of the nano-composite AgNW/AZO electrodes. Our results show that the solar cell with percolated AgNW/AZO electrode show the highest short circuit current density (28 mA/cm(2)) and a series resistance in the same order of magnitude compared to reference solar cells with a thermally evaporated silver grid electrode. The electrode example we chose reveals that the developed AgNW/AZO electrode is a technologically relevant and cheap alternative to conventional solar cell screen printed grid electrodes, which contain similar to 95% more Ag per device area, with a high potential to be further systematically optimized by the presented image processing method. (C) 2015 Elsevier Ltd. All rights reserved.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Göbelt, Manuela
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Hoffmann, Björn
Lehrstuhl für Experimentalphysik (Optik)
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Zusätzliche Organisationseinheit(en)
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)
Exzellenz-Cluster Engineering of Advanced Materials
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Einrichtungen weiterer Autorinnen und Autoren

Max-Planck-Institut für die Physik des Lichts (MPL) / Max Planck Institute for the Science of Light
University of Belgrade / Универзитет у Београду


Forschungsbereiche

C Photonic and Optical Materials
Exzellenz-Cluster Engineering of Advanced Materials
A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Göbelt, M., Keding, R., Schmitt, S.W., Hoffmann, B., Jaeckle, S., Latzel, M.,... Hoffmann, B. (2015). Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy, 16, 196-206. https://dx.doi.org/10.1016/j.nanoen.2015.06.027

MLA:
Göbelt, Manuela, et al. "Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes." Nano Energy 16 (2015): 196-206.

BibTeX: 

Zuletzt aktualisiert 2019-29-05 um 15:13