Exploring Brain Mechanics (EBM): Understanding, engineering and exploiting mechanical properties and signals in central nervous system development, physiology and pathology (SFB 1540 - EBM)

Third Party Funds Group - Overall project


Acronym: SFB 1540 - EBM

Start date : 01.01.2023

End date : 31.12.2026


Project details

Short description

The central nervous system (CNS) is our most complex organ system. Despite tremendous progress in our understanding of the biochemical, electrical, and genetic regulation of CNS functioning and malfunctioning, many fundamental processes and diseases are still not fully understood. Recently, groups of several project leaders in this consortium, and a few other groups worldwide, discover an important contribution of mechanical signals to regulating CNS cell function. The CRC 1540 'Exploring Brain Mechanics' synergizes the expertise of engineers, physicists, biologists, medical researchers, and clinicians in Erlangen and Berlin to exploit mechanics-based approaches to advance our understanding of CNS function and, as a long-term vision, provide the foundation for future improvement of diagnosis and treatment of neurological disorders.

Scientific Abstract

Das zentrale Nervensystem (ZNS) ist unser komplexestes Organsystem. Trotz enormer Fortschritte in unserem Verständnis der biochemischen, elektrischen und genetischen Regulation der Funktion und Fehlfunktion des ZNS sind viele grundlegende Prozesse und Krankheiten immer noch nicht vollständig verstanden. Zum Beispiel können Axon-Wachstumsmuster im sich entwickelnden Gehirn derzeit nicht allein auf der chemischen Umgebung, auf die Neuronen treffen, gut vorhergesagt werden. Mehrere ZNS-bezogene Krankheiten können bei lebenden Patienten nicht präzise diagnostiziert werden, und die Regeneration von Neuronen nach Rückenmarksverletzungen ist immer noch nicht möglich.

Während vieler Entwicklungs- und pathologischer Prozesse sind Neuronen und Gliazellen in Bewegung. Grundsätzlich wird Bewegung von Kräften angetrieben. Daher interagieren ZNS-Zellen mechanisch mit ihrem umgebenden Gewebe. Sie haften an benachbarten Zellen und der extrazellulären Matrix mithilfe von Zelladhäsionsmolekülen, die Reibung erzeugen, und erzeugen Kräfte mithilfe von Zytoskelettproteinen. Diese Kräfte werden nicht nur zur Fortbewegung genutzt, sondern auch, um die mechanischen Eigenschaften der Umgebung zu erkunden, was eine lange Zeit vernachlässigte Auswirkungen auf die Zellfunktion hat.

Erst kürzlich haben Projektleiter dieses Konsortiums und einige andere Gruppen weltweit einen wichtigen Beitrag mechanischer Signale zur Regulation der Funktion von ZNS-Zellen entdeckt. Zum Beispiel haben sie gezeigt, dass die mechanischen Eigenschaften von Hirngewebe das Axonwachstum und die Wegfindung in vivo beeinflussen, dass mechanische Kräfte eine wichtige Rolle bei der Faltung der Hirnrinde im sich entwickelnden menschlichen Gehirn spielen, dass das Fehlen von Remyelinisierung im gealterten Gehirn auf eine Zunahme der Hirnsteifigkeit in vivo zurückzuführen ist und dass viele neurodegenerative Erkrankungen mit Veränderungen in der Mechanik von Gehirn und Rückenmark einhergehen. Diese ersten Erkenntnisse legen nahe, dass die Mechanik zu vielen anderen Aspekten der Funktion des ZNS beiträgt und es wahrscheinlich ist, dass chemische und mechanische Signale auf zellulärer und Gewebeebene intensiv interagieren, um viele verschiedene zelluläre Prozesse zu regulieren.

Der SFB 1540 EBM bündelt das Fachwissen von Ingenieuren, Physikern, Biologen, medizinischen Forschern und Klinikern in Erlangen, um die Mechanik als wichtigen, jedoch fehlenden Puzzlestein in unserem Verständnis von der Entwicklung, Homöostase und Pathologie des ZNS zu erforschen. Unser stark multidisziplinäres Team mit einzigartigem Fachwissen in der Mechanik des ZNS integriert fortgeschrittene in-vivo-, in-vitro- und in-silico-Techniken über verschiedene Zeitskalen (Entwicklung, Alterung, Verletzung/Krankheit) und Längenskalen (Zelle, Gewebe, Organ), um herauszufinden, wie mechanische Kräfte und mechanische Eigenschaften von Zellen und Geweben, wie Steifheit und Viskosität, die Funktion des ZNS beeinflussen. Besonderes Augenmerk legen wir auf (A) zerebrale, (B) spinale und (C) zelluläre Mechanik. In-vivo- und in-vitro-Studien werden ein grundlegendes Verständnis für mechanikregulierte biologische und biomedizinische Prozesse in verschiedenen Regionen des ZNS liefern. Darüber hinaus tragen sie dazu bei, wichtige mechanochemische Faktoren zur Integration in in-silico-Modelle zu identifizieren und Daten für die Kalibrierung und Validierung der Modelle bereitzustellen. In-silico-Modelle ermöglichen es uns wiederum, Hypothesen ohne die Notwendigkeit von umfangreichen oder sogar unzugänglichen Experimenten zu testen. Darüber hinaus ermöglichen sie den Transfer und den Vergleich von Mechanikdaten und -ergebnissen über Arten und Skalen hinweg. Sie versetzen uns auch in die Lage, Prozessparameter für die Entwicklung von in-vitro-hirngewebeähnlichen Matrizen und die in-vivo-Manipulation mechanischer Signale zu optimieren und letztendlich den Weg für personalisierte klinische Vorhersagen zu ebnen.

Zusammenfassend nutzen wir mechanikbasierte Ansätze, um unser Verständnis der Funktion des ZNS voranzutreiben und die Grundlage für zukünftige Verbesserungen bei der Diagnose und Behandlung neurologischer Erkrankungen zu schaffen.

Involved:

Contributing FAU Organisations:

Funding Source