Third Party Funds Group - Sub project
Acronym: GRK2423 - P4
Start date : 02.01.2019
End date : 30.06.2023
Extension date: 31.12.2027
Website: https://www.frascal.research.fau.eu/home/research/p-4-fragmentation-in-large-scale-dem-simulations/
During the past decade, the technique of Discrete Element Simulations (DEM) made great progress and by now it is generally acknowledged as a reliable tool for bulk solids description in a variety of applications. There is a number of models available in the literature to describe fragmentation of particles in DEM simulations, however, by now the predictive power of these models is still poor, especially when dealing with fragmentation probabilities and fragment size distribution. Current approaches use purely spherical models and there is still a gap in predictive fragmentation models for non-spherical particles.
The aim of the present research project is to develop a particle model which allows for both realistic modelling of fragmentation in DEM simulations and at the same time highly efficient large scale simulations.
During the past decade, the technique of Discrete Element Simulations (DEM) made great progress and by now it is generally acknowledged as a reliable tool for bulk solids description in a variety of applications. There is a number of models available in the literature to describe fragmentation of particles in DEM simulations, however, by now the predictive power of these models is still poor, especially when dealing with fragmentation probabilities and fragment size distribution. Current approaches use purely spherical models and there is still a gap in predictive fragmentation models for non-spherical particles.
The aim of the present research project is to develop a particle model which allows for both realistic modelling of fragmentation in DEM simulations and at the same time highly efficient large scale simulations.