Activity Modelling of Additive Manufacturing

Internally funded project

Project Details

Project leader:
Prof. Dr.-Ing. Carolin Körner

Contributing FAU Organisations:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Start date: 01/06/2000

Research Fields

Modelling and Simulation
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Abstract (technical / expert description):

A predictive software relies on exact physical and numerical models. The most important aspect is the correct modelling of the thermal conditions. Almost all modifications of process parameters have a direct influence on heat conduction, the coupling of the energy source or heat sinks by e.g. heat radiation or evaporation. Furthermore, many material parameters are temperature dependent and sensitive to a correct model. During melting a melt pool evolves, whose dynamics are mainly covered by capillarity, wetting, Marangoni convection and gravity. The temperature gradient and the solidification velocity mainly influence the final microstructure while solidification.

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Bauereiß, A. (2018). Mesoskopische Simulation des selektiven Strahlschmelzens mittels einer Lattice Boltzmann Methode mit dynamischer Gitteranpassung (Dissertation).
Markl, M., Lodes, M., Franke, M., & Körner, C. (2017). Additive Fertigung durch selektives Elektronenstrahlschmelzen. Schweissen und Schneiden, 69, 30-39.
Markl, M., Lodes, M., Franke, M., & Körner, C. (2017). Additive manufacturing using selective electron beam melting. Welding and Cutting, 16(3), 177-184.
Klassen, A., Forster, V., & Körner, C. (2017). A multi-component evaporation model for beam melting processes. Modelling and Simulation in Materials Science and Engineering, 25(2).
Klassen, A., Forster, V., Jüchter, V., & Körner, C. (2017). Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl. Journal of Materials Processing Technology, 247, 280-288.
Rai, A., Markl, M., & Körner, C. (2016). A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing. Computational Materials Science, 124, 37-48.
Markl, M., & Körner, C. (2016). Multiscale Modeling of Powder Bed-Based Additive Manufacturing. Annual Review of Materials Research, 46, 93-123.
Markl, M., & Körner, C. (2015). Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method. Journal of Computational Physics, 301, 230-246.
Klassen, A., Scharowsky, T., & Körner, C. (2014). Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. Journal of Physics D: Applied Physics, 47(27).
Klassen, A., Bauereiß, A., & Körner, C. (2014). Modelling of electron beam absorption in complex geometries. Journal of Physics D-Applied Physics, 47(6).

Last updated on 2018-16-11 at 13:21