Activity CVD diamond foils for thermoelectric applications

Internally funded project


Project Details

Project leader:
PD Dr.-Ing. Stefan Rosiwal


Contributing FAU Organisations:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Start date: 01/01/2000


Research Fields

Ultra Hard Coatings
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


Abstract (technical / expert description):


Doping and varying the grain sizes via manipulation of CVD process parameters allow the production of diamond foils with application specific properties. On the one hand, micro crystalline diamond foils with a very high heat conductivity (around 2000 W/mK)  and a very low electrical conductivity can be produced, while on the other hand boron doped (p-conduction) diamond foils  with corresponding micro and nano grain sizes can have electrical conductivities of up to 40.000 S/m and a thermal conductivity of significantly less than 100 W/mK.



It was already possible to measure Seebeck coefficients above 350 µV/K. These completely different diamond foils are being further developed to improve thermoelectrical properties.



The doping of Titanium and Vanadium for the n-conduction of diamond is another topic of research.


Publications

Haase, A., Peters, A., & Rosiwal, S. (2016). Growth and thermoelectric properties of nitrogen-doped diamond/graphite. Diamond and Related Materials, 63, 222-226. https://dx.doi.org/10.1016/j.diamond.2015.10.023
Fecher, J., Wormser, M., & Rosiwal, S. (2016). Long term oxidation behavior of micro- and nano-crystalline CVD diamond foils. Diamond and Related Materials, 61, 41-45. https://dx.doi.org/10.1016/j.diamond.2015.11.009
Engenhorst, M., Fecher, J., Notthoff, C., Schierning, G., Schmechel, R., & Rosiwal, S. (2015). Thermoelectric transport properties of boron-doped nanocrystalline diamond foils. Carbon, 81(1), 650-662. https://dx.doi.org/10.1016/j.carbon.2014.10.002
Sobolewski, S., Lodes, M., Rosiwal, S., & Singer, R. (2013). Surface energy of growth and seeding side of free standing nanocrystalline diamond foils. Surface & Coatings Technology, 232, 640-644. https://dx.doi.org/10.1016/j.surfcoat.2013.06.051
Altes, A., Heiderhoff, R., Balk, L.J., Jentsch, H.-G., & Rosiwal, S. (2002). Comparison of thermal conductivities on abraded and untreated CVD-Diamond obtained by scanning thermal microscopy. International Journal of Modern Physics B, 16, 922-926.
Jentsch, H.-G., Eibisch, H., Rosiwal, S., & Singer, R. (2001). High growth rate and high quality CVD diamond growth. In Applied Diamond Coating / Frontier Carbon Technology (pp. 333-343). Auburn.

Last updated on 2018-15-10 at 11:53