Arbeitsgebiet CVD Diamantfolien für thermoelektrische Anwendungen

Eigenmittelfinanziertes Projekt


Details zum Projekt

Projektleiter/in:
PD Dr.-Ing. Stefan Rosiwal


Beteiligte FAU-Organisationseinheiten:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Projektstart: 01.01.2000


Forschungsbereiche

Ultraharte Schichten
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


Abstract (fachliche Beschreibung):


Dotierung und Variation der Korngröße durch geeignete CVD-Prozessparameter ermöglichen es, Diamantfolien mit völlig unterschiedlichen Eigenschaften herstellen. Zum einen mikrokristalline Diamantfolien mit sehr hoher Wärmeleitfähigkeit (ca. 2000 W/mK) und keiner elektrischen Leitfähigkeit. Zum anderen Bor-dotierte (p-Leitung) Diamantfolien mit Mikro- oder Nanokorngröße, die elektrische Leitfähigkeiten bis zu 40.000 S/m besitzen und thermische Leitfähigkeiten deutlich unter 100 W/mK. Es konnten bereits Seebeckkoeffizienten von über 350 µV/K gemessen werden. Diese völlig unterschiedlichen Diamantfolien werden zur Verbesserung ihrer thermoelektrischen Eigenschaften weiter entwickelt.



Die n-Leitung von Diamant durch Dotierung mit Metallen wie Titan und Vanadin ist ein weiterer Forschungsschwerpunkt.


Publikationen

Haase, A., Peters, A., & Rosiwal, S. (2016). Growth and thermoelectric properties of nitrogen-doped diamond/graphite. Diamond and Related Materials, 63, 222-226. https://dx.doi.org/10.1016/j.diamond.2015.10.023
Fecher, J., Wormser, M., & Rosiwal, S. (2016). Long term oxidation behavior of micro- and nano-crystalline CVD diamond foils. Diamond and Related Materials, 61, 41-45. https://dx.doi.org/10.1016/j.diamond.2015.11.009
Engenhorst, M., Fecher, J., Notthoff, C., Schierning, G., Schmechel, R., & Rosiwal, S. (2015). Thermoelectric transport properties of boron-doped nanocrystalline diamond foils. Carbon, 81(1), 650-662. https://dx.doi.org/10.1016/j.carbon.2014.10.002
Sobolewski, S., Lodes, M., Rosiwal, S., & Singer, R. (2013). Surface energy of growth and seeding side of free standing nanocrystalline diamond foils. Surface & Coatings Technology, 232, 640-644. https://dx.doi.org/10.1016/j.surfcoat.2013.06.051
Altes, A., Heiderhoff, R., Balk, L.J., Jentsch, H.-G., & Rosiwal, S. (2002). Comparison of thermal conductivities on abraded and untreated CVD-Diamond obtained by scanning thermal microscopy. International Journal of Modern Physics B, 16, 922-926.
Jentsch, H.-G., Eibisch, H., Rosiwal, S., & Singer, R. (2001). High growth rate and high quality CVD diamond growth. In Applied Diamond Coating / Frontier Carbon Technology (pp. 333-343). Auburn.

Zuletzt aktualisiert 2018-15-10 um 11:53