Activity CVD diamond foils for mechanical applications

Internally funded project


Project Details

Project leader:
PD Dr.-Ing. Stefan Rosiwal


Contributing FAU Organisations:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Start date: 01/01/2000


Research Fields

Ultra Hard Coatings
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


Abstract (technical / expert description):


The production of the CVD diamond layer can take place separately from the components’ surface. To achieve this, a CVD diamond coating is deposited on silicon or copper based substrates. Free-standing diamond foils with a layer thickness of 20 µm and above can be peeled off the substrate. Laser cutting allows the adequate tailoring of the diamond foils. Bonding and soldering processes are currently under research and are developed for „cold” application onto the component surface.



Application examples:




  • Diamond foils on steel to avoid damage caused by high pressured erosion by a water-sand mixture.


  • Diamond foils on steel to reduce friction (no aluminium adhesion) and wear during aluminium processing.


Publications

Fecher, J., Wormser, M., & Rosiwal, S. (2016). Long term oxidation behavior of micro- and nano-crystalline CVD diamond foils. Diamond and Related Materials, 61, 41-45. https://dx.doi.org/10.1016/j.diamond.2015.11.009
Lodes, M., Kachold, F., & Rosiwal, S. (2015). Mechanical properties of micro- and nanocrystalline diamond foils. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 373(2038). https://dx.doi.org/10.1098/rsta.2014.0136
Lodes, M., Sailer, S., Rosiwal, S., & Singer, R. (2013). Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials. Applied Surface Science, 282, 335-341. https://dx.doi.org/10.1016/j.apsusc.2013.05.129
Kachold, F., Lodes, M., Rosiwal, S., & Singer, R. (2013). Direct measurement of Young's modulus, fracture strength and fracture toughness of nanocrystalline diamond foil by means of tensile testing. Acta Materialia, 61(18), 7000-7008. https://dx.doi.org/10.1016/j.actamat.2013.08.014
Sobolewski, S., Lodes, M., Rosiwal, S., & Singer, R. (2013). Surface energy of growth and seeding side of free standing nanocrystalline diamond foils. Surface & Coatings Technology, 232, 640-644. https://dx.doi.org/10.1016/j.surfcoat.2013.06.051
Uhlmann, E., Langmack, M., Fecher, J., Rosiwal, S., & Singer, R. (2013). Using boron doped diamond foils for fabrication of micro cavities with EDM. (pp. 264-267). euspen.
Ramakrishnan, R., Lodes, M., Rosiwal, S., & Singer, R. (2011). Self-supporting nanocrystalline diamond foils: Influence of template morphologies on the mechanical properties measured by ball on three balls testing. Acta Materialia, 59(9), 3343-3351. https://dx.doi.org/10.1016/j.actamat.2011.02.009
Uhlmann, E., Langmack, M., Garn, R., Oberschmidt, D., Fecher, J., Rosiwal, S., & Singer, R. (2011). Using diamond coated tool-electrodes for drilling micro holes with EDM. (pp. 492-496). euspen.
Lodes, M., Rosiwal, S., & Singer, R. (2010). Self-supporting nanocrystalline diamond foils - A new concept for crystalline diamond on any technical surface. Key Engineering Materials, 438, 163-169. https://dx.doi.org/10.4028/www.scientific.net/KEM.438.163

Last updated on 2018-15-10 at 11:52