Evaporation pheanomena during selective electron beam melting and theri influence on material properties

Third party funded individual grant

Project Details

Project leader:
Prof. Dr.-Ing. Carolin Körner

Contributing FAU Organisations:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Start date: 01/10/2010
End date: 30/06/2017

Research Fields

Additive Manufacturing
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Abstract (technical / expert description):

Additive manufacturing of components is a key technology of the future. The powder bed based selective electron beam melting process allows to produce complex components from high performance alloys. Nevertheless, the highly dynamic melting process is not fully understood and suffers from binding faults, changes of the alloy composition and process instabilities. Aim of the project is to understand the basic mechanisms during selective electron beam melting and to use this knowledge to predict and to influence the resulting materials quality. In order to reach this aim, the selevtive electron beam melting process takting selective vaporation phenomena into account is simulated based on a Lattice Boltzmann Model. Evaporation leads to material loss, has influence on the melt pool dynamics and changes the alloy composition. Simulation on the scale of the powder particles reveals phenomena which result from the complex interplay between beam, powder and melt pool. The numerical results are varified by experiments by an exemplary alloy.

Last updated on 2018-22-11 at 19:21