Activity SEBM 3D Simulation

Internally funded project


Project Details

Project leader:
Prof. Dr.-Ing. Carolin Körner


Contributing FAU Organisations:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Start date: 01/01/2000


Research Fields

Modelling and Simulation
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


Abstract (technical / expert description):


Most process phenomena during selective electron beam melting are covered by a 2D simulation. A more realistic modelling of the melt pool dynamics and the grain structure evolution is reached by 3D simulations. Therefore, two different simulation tools for these purposes are developed at WTM.



The 3D hydrodynamics software SAMPLE3D requires a massively parallel implementation, which has been developed in cooperation with the chair of system simulation. The melt pool dynamics and the material consolidation are investigated in full spatial dimension. Using this software, process windows for dense parts as well as innovative process strategy modifications are predicted.



The grain structure evolution is modeled by the separate software SAMPLE3DGS, which enables the grains to grow in all possible directions during processing. Here, a macroscopic approach is used, where the powder particles are approximated by a continuum. Additionally, only the thermodynamics are modelled. With these simplifications, domains on the scale of whole parts are possible to simulate.


Publications
Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Köpf, J., Rasch, M., Meyer, A., Markl, M., Schmidt, M., & Körner, C. (2018). 3D grain growth simulation and experimental verification in laser beam melting of IN718. In Procedia CIRP 74 (2018) (pp. 82–86). Fürth, DE.
Köpf, J., Gotterbarm, M., Markl, M., & Körner, C. (2018). 3D multi-layer grain structure simulation of powder bed fusion additive manufacturing. Acta Materialia, 152, 119-126. https://dx.doi.org/10.1016/j.actamat.2018.04.030
Hübner, D., Gotterbarm, M., Kergaßner, A., Köpf, J., Pobel, C., Markl, M.,... Stingl, M. (2018). Topology Optimization in Additive Manufacturing Considering the Grain Structure of Inconel 718 using Numerical Homogenization. In Proceedings of 7th International Conference on Additive Technologies (pp. 102-111). Maribor, SI.
Köpf, J., Rai, A., Markl, M., & Körner, C. (2016). 3D Grain Structure Simulation for Beam-Based Additive Manufacturing. In Proceedings of the 6th International Conference on Additive Technologies iCAT 2016 (pp. 215-221). Nürnberg, DE.
Markl, M., Bauereiß, A., Rai, A., & Körner, C. (2016). Numerical Investigations of Selective Electron Beam Melting on the Powder Scale. In Proceedings of the Fraunhofer Direct Digital Manufacturing Conference 2016. Berlin: Fraunhofer Verlag.
Markl, M., Ammer, R., Rüde, U., & Körner, C. (2015). Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. International Journal of Advanced Manufacturing Technology, 78(1-4), 239-247. https://dx.doi.org/10.1007/s00170-014-6594-9
Markl, M. (2015). Numerische Modellierung und Simulation des selektiven Elektronenstrahlschmelzens basierend auf einer gekoppelten Gitter Boltzmann und Diskrete Element Methode (Dissertation).
Bauer, M., Schornbaum, F., Godenschwager, C., Markl, M., Anderl, D., Köstler, H., & Rüde, U. (2014). A Python extension for the massively parallel framework waLBerla. In online (pp. 1-8). New Orleans, US.
Ammer, R., Ljungblad, U., Markl, M., Körner, C., & Rüde, U. (2014). Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Computers & Mathematics With Applications, 67(2), 318-330. https://dx.doi.org/10.1016/j.camwa.2013.10.001
Ammer, R., Markl, M., Jüchter, V., Körner, C., & Rüde, U. (2014). Validation Experiments for LBM Simulations of Electron Beam Melting. International Journal of Modern Physics C, 1-9. https://dx.doi.org/10.1142/S0129183114410095

Last updated on 2018-10-12 at 09:39