Maximilian Schäfer



Organisation


Lehrstuhl für Multimediakommunikation und Signalverarbeitung


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 2 Go to next page Go to last page

Schäfer, M., Wicke, W., Rabenstein, R., & Schober, R. (2018). An nD Model for a Cylindrical Diffusion-Advection Problem with an Orthogonal Force Component. Shanghai, CN.
Rabenstein, R., Schäfer, M., Bauer, J., & Strobl, C. (2018). A Wave Digital Kalman Filter Approach for Fault Detection in DC Grids: A Case Study. Florence, IT.
Schäfer, M., & Rabenstein, R. (2018). Modeling of Transport Processes in Bounded Domains. Paper presentation at 3rd Workshop on Molecular Comunications, Ghent, BE.
Strobl, C., Schäfer, M., & Rabenstein, R. (2018). Non-Recursive System Identification and Fault Detection in LVDC and ELVDC Grids. Florence, IT.
Schäfer, M., & Rabenstein, R. (2018). Physical Modelling of Guitar Strings with Realistic Boundary Conditions. München, DE.
Strobl, C., Ott, L., Kaiser, J., Gosses, K., Schäfer, M., & Rabenstein, R. (2018). Refined Fault Detection in LVDC-Grids with Signal Processing, System Identification and Machine Learning Methods. Albuquerque, NM USA, US.
Schäfer, M., Wicke, W., Rabenstein, R., & Schober, R. (2018). Transfer function models for particle diffusion in a horizontal cylindrical shape with a vertical force component.
Schäfer, M., & Rabenstein, R. (2017). A Continuous Frequency Domain Description of Adjustable Boundary Conditions for Multidimensional Transfer Function Models. Edinburgh, GB.
Schäfer, M., Rabenstein, R., & Strobl, C. (2017). A Multidimensional Transfer Function Model for Frequency Dependent Transmission Lines. (pp. 1014-1017). Baltimore, MD, US.
Kram, S., Schäfer, M., & Rabenstein, R. (2017). Approximation of enzyme kinetics for high enzyme concentration by a first order perturbation approach. Journal of Mathematical Chemistry, 56(4), 1153-1183. https://dx.doi.org/10.1007/s10910-017-0848-3

Last updated on 2017-13-06 at 12:22