Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions

Koegl M, Vogler J, Zigan L (2024)


Publication Type: Journal article

Publication year: 2024

Journal

Book Volume: 24

Article Number: 724

Journal Issue: 3

DOI: 10.3390/s24030724

Abstract

This study investigated spectral laser-induced fluorescence signals of dyes in fuels for automotive and aerospace applications under low temperatures and cryogenic conditions down to 183 K. For this purpose, a fluorescence chamber was developed based on cooling with liquid nitrogen. The design enabled a minimal inner chamber temperature of 153 K. Furthermore, the applicability of two-color LIF for liquid thermometry was evaluated under these conditions. The temperature determination was based on the temperature-sensitive fluorescence intensity ratio of the special dyes doped into the fuels determined in suitable spectral regions, which represented common bandpass filters. For this purpose, the fluorescence signals of the dye doped into the gasoline and jet fuel surrogate isooctane were tested as well as blends of isooctane and the ethanol biofuels E20 (comprising 80 vol.% isooctane and 20 vol.% ethanol), E40, and E100. Additionally, a realistic multi-component fuel Jet A-1 mixed with a suitable fluorescence dye was investigated. E100 was doped with Eosin-Y, and the remaining fuels were doped with Nile red. Temperature-dependent spectral LIF intensities were recorded in the range of 183 K–293 K, which simulate extreme environments for aerospace and automotive applications. Frozen fuel–dye mixtures cause significant extinction effects and prevent sufficient signal detection at low and cryogenic temperatures, defining the detection limit. A temperature decrease led to a spectral shift in the emission peaks of E100 doped with Eosin-Y toward shorter wavelengths, while the spectra of mixtures doped with Nile red were shifted toward longer wavelengths. The suggested bandpass filters produced the temperature-sensitive intensity ratio (the average over the temperature interval) of the dyes with the largest sensitivity for Jet A-1 (5.2%/K), followed by E100 (4.95%/K), E40 (4.07%/K), E20 (3.23%/K), and isooctane (3.07%/K), even at cryogenic temperatures.

Involved external institutions

How to cite

APA:

Koegl, M., Vogler, J., & Zigan, L. (2024). Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions. Sensors, 24(3). https://doi.org/10.3390/s24030724

MLA:

Koegl, Matthias, Jonas Vogler, and Lars Zigan. "Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions." Sensors 24.3 (2024).

BibTeX: Download