Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy

Aviles Verdera J, Story L, Hall M, Finck T, Egloff A, Seed PT, Malik SJ, Rutherford MA, Hajnal JV, Tomi-Tricot R, Hutter J (2023)


Publication Type: Journal article

Publication year: 2023

Journal

Book Volume: 309

Pages Range: e223050-

Journal Issue: 1

DOI: 10.1148/radiol.223050

Abstract

Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.

Involved external institutions

How to cite

APA:

Aviles Verdera, J., Story, L., Hall, M., Finck, T., Egloff, A., Seed, P.T.,... Hutter, J. (2023). Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy. Radiology, 309(1), e223050-. https://doi.org/10.1148/radiol.223050

MLA:

Aviles Verdera, Jordina, et al. "Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy." Radiology 309.1 (2023): e223050-.

BibTeX: Download