Thermal Stability and CO Permeability of [C4C1Pyr][NTf2]/Pd(111) Model SCILLs: from UHV to Ambient Pressure

Eschenbacher R, Trzeciak S, Schuschke C, Schötz S, Hohner C, Blaumeiser D, Zahn D, Retzer T, Libuda J (2023)


Publication Type: Journal article

Publication year: 2023

Journal

DOI: 10.1007/s11244-023-01798-4

Abstract

Solid catalysts with ionic liquid layers (SCILLs) are heterogeneous catalysts which benefit significantly in terms of selectivity from a thin coating of an ionic liquid (IL). In the present work, we study the interaction of CO with a Pd model SCILL consisting of a 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide ([C4C1Pyr][NTf2]) film deposited on Pd(111). We investigate the CO permeability and stability of the IL film via pressure modulation experiments by infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum (UHV) and at ambient pressure conditions by time-resolved, temperature-programmed, and polarization-modulated (PM) IRAS experiments. In addition, we performed molecular dynamics (MD) simulations to identify adsorption motifs, their abundance, and the influence of CO. We find a strongly bound IL wetting monolayer (ML) and a potentially dewetting multilayer. Molecular reorientation of the IL at the interface and multilayer dewetting allow for the accumulation of CO at the metal/IL interface. Our results confirm that co-adsorption of CO changes the molecular structure of the IL wetting layer which confirms the importance to study model SCILL systems under in situ conditions. Graphical abstract: [Figure not available: see fulltext.].

Authors with CRIS profile

How to cite

APA:

Eschenbacher, R., Trzeciak, S., Schuschke, C., Schötz, S., Hohner, C., Blaumeiser, D.,... Libuda, J. (2023). Thermal Stability and CO Permeability of [C4C1Pyr][NTf2]/Pd(111) Model SCILLs: from UHV to Ambient Pressure. Topics in Catalysis. https://doi.org/10.1007/s11244-023-01798-4

MLA:

Eschenbacher, Roman, et al. "Thermal Stability and CO Permeability of [C4C1Pyr][NTf2]/Pd(111) Model SCILLs: from UHV to Ambient Pressure." Topics in Catalysis (2023).

BibTeX: Download