Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution

Li G, Fu C, Wu J, Rao J, Liou SC, Xu X, Shao B, Liu K, Liu E, Kumar N, Liu X, Fahlman M, Gooth J, Auffermann G, Sun Y, Felser C, Zhang B (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 254

Pages Range: 1-6

DOI: 10.1016/j.apcatb.2019.04.080

Abstract

The presence of elemental vacancies in materials are inevitable according to statistical thermodynamics, which will decide the chemical and physical properties of the investigated system. However, the controlled manipulation of vacancies for specific applications is a challenge. Here we report a facile method for creating large concentrations of S vacancies in the inert basal plane of MoS2 supported on semimetal CoMoP2. With a small applied potential, S atoms can be removed in the form of H2S due to the optimized free energy of formation. The existence of vacancies favors electron injection from the electrode to the active site by decreasing the contact resistance. As a consequence, the catalytic current is increased by 221% with the vacancy-rich MoS2 as electrocatalyst for hydrogen evolution reaction (HER). A small overpotential of 75 mV is needed to deliver a current density of 10 mA cm−2, which is considered among the best values achieved for MoS2. It is envisaged that this work may provide a new strategy for utilizing the semimetal phase for structuring MoS2 into a multi-functional material.

Involved external institutions

How to cite

APA:

Li, G., Fu, C., Wu, J., Rao, J., Liou, S.-C., Xu, X.,... Zhang, B. (2019). Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Applied Catalysis B-Environmental, 254, 1-6. https://doi.org/10.1016/j.apcatb.2019.04.080

MLA:

Li, Guowei, et al. "Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution." Applied Catalysis B-Environmental 254 (2019): 1-6.

BibTeX: Download