Microplasticity and yielding in crystals with heterogeneous dislocation distribution

Journal article


Publication Details

Author(s): Zhang X, Xiong J, Fan H, Zaiser M
Journal: Modelling and Simulation in Materials Science and Engineering
Publication year: 2019
Volume: 27
Journal issue: 7
ISSN: 0965-0393


Abstract

In this study, we use discrete dislocation dynamics simulation to investigate the effect of heterogeneous dislocation density on the transition between quasi-elastic deformation and plastic flow in face-centered cubic single crystals. By analyzing the stress-strain curves of samples with an initial, axial dislocation density gradient, we arrive at the following conclusions: (i) in the regime of quasi-elastic deformation before the onset of plastic flow, the effective elastic modulus of the simulated samples falls significantly below the value for a dislocation-free crystal. This modulus reduction increases with decreasing dislocation density gradient: crystals with homogeneous dislocation distribution are thus weakest in the quasi-elastic regime; (ii) the transition towards plastic flow occurs first in regions of reduced dislocation density. Therefore, the overall yield stress decreases with increasing dislocation density gradient; (iii) crystals with dislocation density gradient exhibit a more pronounced hardening stage during which stress is re-distributed onto stronger regions with higher dislocation density until the sample flows at a constant flow stress that is approximately independent of dislocation density gradient. We interpret these findings in terms of a continuum dislocation dynamics inspired model of dislocation density evolution that accounts for geometrically reversible ('inversive') dislocation motions. The transition between quasi-elastic and plastic deformation is interpreted as a transition from inversive to non-inversive dislocation motion, and the initial differences in elastic modulus are related to a density dependent polarizability of the dislocation system. The subsequent plastic flow behavior is analyzed in terms of a modified version of Mughrabi's composite model.


FAU Authors / FAU Editors

Zaiser, Michael Prof. Dr.
Lehrstuhl für Werkstoffsimulation


External institutions with authors

Sichuan University (SCU) / 四川大学
Southwest Jiaotong University / 西南交通大学


How to cite

APA:
Zhang, X., Xiong, J., Fan, H., & Zaiser, M. (2019). Microplasticity and yielding in crystals with heterogeneous dislocation distribution. Modelling and Simulation in Materials Science and Engineering, 27(7). https://dx.doi.org/10.1088/1361-651X/ab2851

MLA:
Zhang, Xu, et al. "Microplasticity and yielding in crystals with heterogeneous dislocation distribution." Modelling and Simulation in Materials Science and Engineering 27.7 (2019).

BibTeX: 

Last updated on 2019-24-07 at 10:08