Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications

Dittler ML, Ünalan I, Grünewald A, Beltrán AM, Grillo CA, Detsch R, Gonzalez MC, Boccaccini AR (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 182

Article Number: 110346

DOI: 10.1016/j.colsurfb.2019.110346

Abstract

Bioactive glass (BG)-based scaffolds of 45S5 composition covered with hydroxyapatite nanoparticles loaded with Mg2+, Zn2+ and, both Mg2+ and Zn2+ ions, were developed and tested as materials for tissue engineering applications. The scaffolds were prepared by the foam replica technique and mono- and bi-metal loaded and unloaded hydroxyapatite nanoparticles (HA, Zn-HA, Mg-HA and Mg-Zn-HA) were obtained by an adaptation of the wet chemical deposition method. Coating of BG with these nanoparticles was performed by dip-coating to obtain HA-BG, Zn-HA-BG, Mg-HA-BG and Mg-Zn-HA-BG scaffolds. As predictor of the bone bonding ability of the produced scaffolds, in this study we investigated the formation of an apatite layer on the scaffold surfaces in the presence of simulated body fluid. The cytotoxicity and osteogenic properties of the materials in vitro was evaluated using human osteoblast-like MG-63 cell cultures. The mineralization assay following Kokubo's protocol indicated that bi-metal loaded Mg-Zn-HA-BG scaffolds exhibited higher/faster bioactivity than mono-metal loaded scaffolds while mineralization of HA-BG, Zn-HA-BG and Mg-HA-BG was similar to that of uncoated scaffolds. Moreover, an increase of proliferation of MG-63 cells after 48 h and 7 days was measured by BrdU assays for Mg-Zn-HA-BG scaffolds. In agreement with these results, SEM images confirmed increased interaction between these scaffolds and cells, in comparison to that observed for mono-metal-loaded HA-coated scaffolds. Altogether, the obtained results suggest that nanocrystalline Mg-Zn-HA coatings enhance the biological performance of standard scaffolds of 45S5 BG composition. Thus these novel ion doped HA coated scaffolds are attractive systems for bone tissue engineering.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Dittler, M.L., Ünalan, I., Grünewald, A., Beltrán, A.M., Grillo, C.A., Detsch, R.,... Boccaccini, A.R. (2019). Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 182. https://dx.doi.org/10.1016/j.colsurfb.2019.110346

MLA:

Dittler, Maria Laura, et al. "Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications." Colloids and Surfaces B: Biointerfaces 182 (2019).

BibTeX: Download