Monitoring of the nano-structure response of natural clay under mechanical perturbation using small angle X-ray scattering and digital image correlation

Birmpilis G, Hall SA, Lages S, Dijkstra J (2019)


Publication Type: Journal article

Publication year: 2019

Journal

DOI: 10.1007/s11440-019-00832-8

Abstract

This paper introduces a new experimental method to monitor the evolving intra-particle, nanometre-scale response during hydro-mechanical tests on undisturbed wet clay samples using small angle X-ray scattering (SAXS). The method uses a newly developed miniature plane-strain one-dimensional compression cell that facilitates simultaneous full-field surface displacement measurements using digital image correlation and SAXS measurements. The 60–120 s acquisition times offered by SAXS at synchrotron facilities are beneficial to study time-dependent mechanisms in clays. The experimental results presented indicate that, for the natural sensitive clay tested in this work, no significant structural changes occur at the intra-particle scale during loading, even when large strains are measured at the macro-scale. In addition, changes that are observed at this scale occur after the end of perturbation, i.e. the creation of new intra-particle structures. Further information is obtained on the orientation evolution of the fabric by the comparative analysis of the individual mineral component response.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Birmpilis, G., Hall, S.A., Lages, S., & Dijkstra, J. (2019). Monitoring of the nano-structure response of natural clay under mechanical perturbation using small angle X-ray scattering and digital image correlation. Acta Geotechnica. https://dx.doi.org/10.1007/s11440-019-00832-8

MLA:

Birmpilis, Georgios, et al. "Monitoring of the nano-structure response of natural clay under mechanical perturbation using small angle X-ray scattering and digital image correlation." Acta Geotechnica (2019).

BibTeX: Download