Large-Area 3D Plasmonic Crescents with Tunable Chirality

Görlitzer E, Mohammadi R, Nechayev S, Banzer P, Vogel N (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Article Number: 1801770

DOI: 10.1002/adom.201801770

Abstract

Chiral plasmonic nanostructures hold promise for enhanced chiral sensing and circular dichroism spectroscopy of chiral molecules. It is therefore of interest to fabricate chiral plasmonic nanostructures with tailored chiroptical properties over large areas with reasonable effort. Here, a colloidal lithography approach is used to produce macroscopic arrays of sub-micrometer 3D chiral plasmonic crescent structures over areas >1 cm 2 . The chirality originates from symmetry breaking by the introduction of a step within the crescent structure. This step is produced by an intermediate layer of silicon dioxide onto which the metal crescent structure is deposited. It is experimentally demonstrated that the chiroptical properties in such structures can be tailored by changing the position of the step within the crescent. These experiments are complemented by finite element simulations and the application of a multipole expansion to elucidate the physical origin of the circular dichroism of the crescent structures.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Görlitzer, E., Mohammadi, R., Nechayev, S., Banzer, P., & Vogel, N. (2019). Large-Area 3D Plasmonic Crescents with Tunable Chirality. Advanced Optical Materials. https://dx.doi.org/10.1002/adom.201801770

MLA:

Görlitzer, Eric, et al. "Large-Area 3D Plasmonic Crescents with Tunable Chirality." Advanced Optical Materials (2019).

BibTeX: Download