Surface chemistry of 2,3-dibromosubstituted norbornadiene/quadricyclane as molecular solar thermal energy storage system on Ni(111)

Journal article


Publication Details

Author(s): Bauer U, Fromm L, Weiß C, Späth F, Bachmann P, Düll F, Steinhauer J, Matysik S, Pominov A, Görling A, Hirsch A, Steinrück HP, Papp C
Journal: Journal of Chemical Physics
Publication year: 2019
Volume: 150
Journal issue: 18
ISSN: 0021-9606
eISSN: 1089-7690


Abstract

Dwindling fossil fuels force humanity to search for new energy production routes. Besides energy generation, its storage is a crucial aspect. One promising approach is to store energy from the sun chemically in strained organic molecules, so-called molecular solar thermal (MOST) systems, which can release the stored energy catalytically. A prototypical MOST system is norbornadiene/quadricyclane (NBD/QC) whose energy release and surface chemistry need to be understood. Besides important key parameters such as molecular weight, endergonic reaction profiles, and sufficient quantum yields, the position of the absorption onset of NBD is crucial to cover preferably a large range of sunlight's spectrum. For this purpose, one typically derivatizes NBD with electron-donating and/or electron-accepting substituents. To keep the model system simple enough to be investigated with photoemission techniques, we introduced bromine atoms at the 2,3-position of both compounds. We study the adsorption behavior, energy release, and surface chemistry on Ni(111) using high-resolution X-ray photoelectron spectroscopy (HR-XPS), UV photoelectron spectroscopy, and density functional theory calculations. Both Br
2
-NBD and Br
2
-QC partially dissociate on the surface at ∼120 K, with Br
2
-QC being more stable. Several stable adsorption geometries for intact and dissociated species were calculated, and the most stable structures are determined for both molecules. By temperature-programmed HR-XPS, we were able to observe the conversion of Br
2
-QC to Br
2
-NBD in situ at 170 K. The decomposition of Br
2
-NBD starts at 190 K when C-Br bond cleavage occurs and benzene and methylidene are formed. For Br
2
-QC, the cleavage already occurs at 130 K when cycloreversion to Br
2
-NBD sets in.


FAU Authors / FAU Editors

Bachmann, Philipp
Lehrstuhl für Physikalische Chemie II
Bauer, Udo Dr.
Weiß, Corinna
Lehrstuhl für Physikalische Chemie II
Düll, Fabian
Lehrstuhl für Physikalische Chemie II
Fromm, Lukas
Lehrstuhl für Theoretische Chemie
Görling, Andreas Prof. Dr.
Lehrstuhl für Theoretische Chemie
Hirsch, Andreas Prof. Dr.
Lehrstuhl für Organische Chemie II
Matysik, Sabine
Lehrstuhl für Theoretische Chemie
Papp, Christian PD Dr.
Lehrstuhl für Physikalische Chemie II
Pominov, Arkadii
Lehrstuhl für Theoretische Chemie
Späth, Florian
Lehrstuhl für Physikalische Chemie II
Steinhauer, Johann
Lehrstuhl für Physikalische Chemie II
Steinrück, Hans-Peter Prof. Dr.
Lehrstuhl für Physikalische Chemie II
Lehrstuhl für Organische Chemie II


How to cite

APA:
Bauer, U., Fromm, L., Weiß, C., Späth, F., Bachmann, P., Düll, F.,... Papp, C. (2019). Surface chemistry of 2,3-dibromosubstituted norbornadiene/quadricyclane as molecular solar thermal energy storage system on Ni(111). Journal of Chemical Physics, 150(18). https://dx.doi.org/10.1063/1.5095583

MLA:
Bauer, Udo, et al. "Surface chemistry of 2,3-dibromosubstituted norbornadiene/quadricyclane as molecular solar thermal energy storage system on Ni(111)." Journal of Chemical Physics 150.18 (2019).

BibTeX: 

Last updated on 2019-02-08 at 09:03