MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging

Journal article


Publication Details

Author(s): Haug M, Meyer C, Reischl B, Prölß G, Nübler S, Schürmann S, Schneidereit D, Heckel M, Pöschel T, Rupitsch S, Friedrich O
Journal: Biosensors and Bioelectronics
Publication year: 2019
Volume: 138
ISSN: 0956-5663
eISSN: 1873-4235


Abstract

We present an enhanced version of our previously engineered MyoRobot system for reliable, versatile and automated investigations of skeletal muscle or linear polymer material (bio)mechanics. That previous version already replaced strenuous manual protocols to characterize muscle biomechanics properties and offered automated data analysis. Here, the system was further improved for precise control over experimental temperature and muscle single fiber sarcomere length. Moreover, it also now features the calculation of fiber cross-sectional area via on-the-fly optical diameter measurements using custom-engineered microscope optics. With this optical systems integration, the MyoRobot 2.0 allows to tailor a wealth of recordings for relevant physiological parameters to be sequentially executed in living single myofibers. Research questions include assessing temperature-dependent performance of active or passive biomechanics, or automated control over length-tension or length-velocity relations. The automatically obtained passive stress-strain relationships and elasticity modules are important parameters in (bio)material science. From the plethora of possible applications, we validated the improved MyoRobot 2.0 by assessing temperature-dependent myofibrillar Ca
2+
sensitivity, passive axial compliance and Young's modulus. We report a Ca
2+
desensitization and a narrowed dynamic range at higher temperatures in murine M. extensor digitorum longus single fibers. In addition, an increased axial mechanical compliance in single muscle fibers with Young's moduli between 40 - 60 kPa was found, compatible with reported physiological ranges. These applications demonstrate the robustness of our MyoRobot 2.0 for facilitated single muscle fiber biomechanics assessment.


FAU Authors / FAU Editors

Friedrich, Oliver Prof. Dr. Dr.
Heckel, Michael
Lehrstuhl für Medizinische Biotechnologie
Lehrstuhl für Multiscale Simulation of Particulate Systems
Haug, Michael
Lehrstuhl für Medizinische Biotechnologie
Meyer, Charlotte
Lehrstuhl für Medizinische Biotechnologie
Nübler, Stefanie Dr.
Lehrstuhl für Medizinische Biotechnologie
Pöschel, Thorsten Prof. Dr.
Lehrstuhl für Multiscale Simulation of Particulate Systems
Prölß, Gerhard
Lehrstuhl für Medizinische Biotechnologie
Reischl, Barbara
Lehrstuhl für Medizinische Biotechnologie
Rupitsch, Stefan PD Dr.
Lehrstuhl für Sensorik
Schneidereit, Dominik
Lehrstuhl für Medizinische Biotechnologie
Schürmann, Sebastian Dr. rer. nat.
Lehrstuhl für Medizinische Biotechnologie


How to cite

APA:
Haug, M., Meyer, C., Reischl, B., Prölß, G., Nübler, S., Schürmann, S.,... Friedrich, O. (2019). MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging. Biosensors and Bioelectronics, 138. https://dx.doi.org/10.1016/j.bios.2019.04.052

MLA:
Haug, Michael, et al. "MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging." Biosensors and Bioelectronics 138 (2019).

BibTeX: 

Last updated on 2019-29-05 at 14:23