Beitrag in einer Fachzeitschrift

Details zur Publikation

Autorinnen und Autoren: Tovmassian G, Yungelson L, Rauch T, Suleimanov V, Napiwotzki R, Stasinska G, Tomsick J, Wilms J, Morisset C, Pena M, Richer MG
Zeitschrift: Astrophysical Journal
Jahr der Veröffentlichung: 2010
Band: 714
Heftnummer: 1
Seitenbereich: 178-193
ISSN: 0004-637X
eISSN: 1538-4357


We present a detailed investigation of SBS 1150+599A, a close binary star hosted by the planetary nebula PN G135.9+55.9 (TS 01). The nebula, located in the Galactic halo, is the most oxygen-poor known to date and is the only one known to harbor a double degenerate core. We present XMM-Newton observations of this object, which allowed the detection of the previously invisible component of the binary core, whose existence was inferred so far only from radial velocity (RV) and photometric variations. The parameters of the binary system were deduced from a wealth of information via three independent routes using the spectral energy distribution (from the infrared to X-rays), the light and RV curves, and a detailed model atmosphere fitting of the stellar absorption features of the optical/UV component. We find that the cool component must have a mass of 0.54 +/- 0.2 M(circle dot), an average effective temperature, T(eff), of 58,000 +/- 3000 K, a mean radius of 0.43 +/- 0.3 R(circle dot), a gravity, log g = 5.0 +/- 0.3, and that it nearly fills its Roche lobe. Its surface elemental abundances are found to be: 12 + log He/H = 10.95 +/- 0.04 dex, 12 + log C/H = 7.20 +/- 0.3 dex, 12 + log N/H < 6.92, and 12 + log O/H < 6.80, in overall agreement with the chemical composition of the planetary nebula. The hot component has T(eff) = 160-180 kK, a luminosity of about similar to 10(4) L(circle dot) and a radius slightly larger than that of a white dwarf. It is probably bloated and heated as a result of intense accretion and nuclear burning on its surface in the past. The total mass of the binary system is very close to the Chandrasekhar limit. This makes TS 01 one of the best Type Ia supernova progenitor candidates. We propose two possible scenarios for the evolution of the system up to its present stage.

FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Wilms, Jörn Prof. Dr.
Professur für Astronomie und Astrophysik

Einrichtungen weiterer Autorinnen und Autoren

Eberhard Karls Universität Tübingen
National Autonomous University of Mexico / Universidad Nacional Autónoma de México (UNAM)
Russian Academy of Sciences / Росси́йская акаде́мия нау́к (RAS)
University of California, Berkeley
University of Hertfordshire
University of Paris 7 - Denis Diderot / Université Paris VII Denis Diderot


Tovmassian, G., Yungelson, L., Rauch, T., Suleimanov, V., Napiwotzki, R., Stasinska, G.,... Richer, M.G. (2010). THE DOUBLE-DEGENERATE NUCLEUS OF THE PLANETARY NEBULA TS 01: A CLOSE BINARY EVOLUTION SHOWCASE. Astrophysical Journal, 714(1), 178-193.

Tovmassian, Gagik, et al. "THE DOUBLE-DEGENERATE NUCLEUS OF THE PLANETARY NEBULA TS 01: A CLOSE BINARY EVOLUTION SHOWCASE." Astrophysical Journal 714.1 (2010): 178-193.


Zuletzt aktualisiert 2019-23-08 um 08:33