Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cells

Journal article
(Original article)


Publication Details

Author(s): Gasparini N, Kahmann S, Salvador MF, Perea JD, Sperlich A, Baumann A, Li N, Rechberger S, Spiecker E, Dyakonov V, Portale G, Loi MA, Brabec C, Ameri T
Journal: Advanced Energy Materials
Publisher: Wiley-VCH Verlag
Publication year: 2019
ISSN: 1614-6832
eISSN: 1614-6840
Language: English


Abstract

Ternary
blends with broad spectral absorption have the potential to increase charge
generation in organic solar cells but feature additional complexity due to
limited intermixing and electronic mismatch. Here, a model system comprising
the polymers poly[5,5-bis(2-butyloctyl)-(2,2-bithiophene)-4,4-dicarboxylate-alt-5,5-2,2-bithiophene]
(PDCBT) and PTB7-Th and PC70BM as an electron
accepting unit is presented. The power conversion efficiency (PCE) of the
ternary system clearly surpasses the performance of either of the binary systems.
The photophysics is governed by a fast energy transfer process from PDCBT to
PTB7-Th, followed by electron transfer at the PTB7-Th:fullerene interface. The
morphological motif in the ternary blend is characterized by polymer fibers.
Based on a combination of photophysical analysis, GIWAXS measurements and
calculation of the intermolecular parameter, the latter indicating a very
favorable molecular affinity between PDCBT and PTB7-Th, it is proposed that an
efficient charge generation mechanism is possible because PTB7-Th predominantly
orients around PDCBT filaments, allowing energy to be effectively relayed from
PDCBT to PTB7-Th. Fullerene can be replaced by a nonfullerene acceptor without
sacrifices in charge generation, achieving a PCE above 11%. These results
support the idea that thermodynamic mixing and energetics of the polymer–polymer
interface are critical design parameter for realizing highly efficient ternary
solar cells with variable electron acceptors


FAU Authors / FAU Editors

Ameri, Tayebeh Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Brabec, Christoph Prof. Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Gasparini, Nicola
Institute Materials for Electronics and Energy Technology (i-MEET)
Kahmann, Simon
Institute Materials for Electronics and Energy Technology (i-MEET)
Li, Ning Dr.-Ing.
Institute Materials for Electronics and Energy Technology (i-MEET)
Perea Ospina, Jose Dario
Institute Materials for Electronics and Energy Technology (i-MEET)
Rechberger, Stefanie Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Salvador, Michael Filipe Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Additional Organisation
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden


External institutions with authors

Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern)
Julius-Maximilians-Universität Würzburg
University of Groningen / Rijksuniversiteit Groningen


Research Fields

Neue Materialien und Prozesse
Research focus area of a faculty: Technische Fakultät


How to cite

APA:
Gasparini, N., Kahmann, S., Salvador, M.F., Perea, J.D., Sperlich, A., Baumann, A.,... Ameri, T. (2019). Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cells. Advanced Energy Materials. https://dx.doi.org/10.1002/aenm.201803394

MLA:
Gasparini, Nicola, et al. "Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cells." Advanced Energy Materials (2019).

BibTeX: 

Last updated on 2019-09-08 at 09:03