Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting

Journal article
(Original article)


Publication Details

Author(s): Köpf J, Soldner D, Ramsperger M, Mergheim J, Markl M, Körner C
Journal: Computational Materials Science
Publisher: Elsevier B.V.
Publication year: 2019
Volume: 162
Pages range: 148-155
ISSN: 0927-0256
Language: English


Abstract

Selective Electron Beam Melting (SEBM) refers to an additive manufacturing process of building near net shaped components layer wise by iteratively melting of metal powder
using an electron beam. Due to the preheating of the material and very
high scan velocities of the electron beam, the process allows large processing windows defined by different process strategies. This variety enables the adjustment of part properties by, e.g., targeting certain microstructures. However, this variety has its disadvantage in the need for costly trial and error experiments. Therefore, numerical predictions are inevitable in locating promising process parameter combinations.

We
present the weak coupling of a Finite-Element (FE) model with a
cellular automaton (CA) model to predict the microstructure evolution
during SEBM. We use an FE model for the computation of the heat input,
since the temperature history mainly influences the subsequent
microstructure evolution. The FE model provides precomputed temperature
fields for our sophisticated CA-based crystal growth model, which
successfully predicts bulk material microstructures. The compound is
validated by accurately reproducing the microstructure of an additively
build cylinder from CMSX-4 powder, a nickel based superalloy.
Special emphasize is laid on the accurate prediction of the
microstructure both in the shell as well as the core of the cylinder.



FAU Authors / FAU Editors

Köpf, Johannes
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Körner, Carolin Prof. Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Markl, Matthias Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Mergheim, Julia PD Dr.
Technische Fakultät
Ramsperger, Markus
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Soldner, Dominic
Lehrstuhl für Technische Mechanik


Research Fields

Modelling and Simulation
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Additive Manufacturing
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)


How to cite

APA:
Köpf, J., Soldner, D., Ramsperger, M., Mergheim, J., Markl, M., & Körner, C. (2019). Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting. Computational Materials Science, 162, 148-155. https://dx.doi.org/10.1016/j.commatsci.2019.03.004

MLA:
Köpf, Johannes, et al. "Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting." Computational Materials Science 162 (2019): 148-155.

BibTeX: 

Last updated on 2019-27-03 at 13:50