Large-scale simulation of mantle convection based on a new matrix-free approach

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autor(en): Bauer S, Huber M, Ghelichkhan S, Mohr M, Rüde U, Wohlmuth BI
Zeitschrift: Journal of Computational Science
Verlag: Elsevier
Jahr der Veröffentlichung: 2019
Band: 31
Seitenbereich: 60--76
ISSN: 1877-7503


In this paper, we report on a two-scale approach for efficient matrix-free finite element simulations. It is an extended version of our previous conference publication [1]. The proposed method is based on surrogate element matrices constructed by low order polynomial approximations. It is applied to a Stokes-type PDE system with variable viscosity as is a key component in mantle convection models. We set the ground for a rigorous performance analysis inspired by the concept of parallel textbook multigrid efficiency and study the weak scaling behavior on SuperMUC, a peta-scale supercomputer system. For a complex geodynamical model, we achieve, on up to 47 250 compute cores, a parallel efficiency of 93% for application of the discrete operator and 83% for a complete Uzawa V-cycle including the coarse grid solve. Our largest simulation uses a trillion (O (10 12)) degrees of freedom for a global mesh resolution …

FAU-Autoren / FAU-Herausgeber

Huber, Markus
Lehrstuhl für Informatik 10 (Systemsimulation)
Rüde, Ulrich Prof. Dr.
Lehrstuhl für Informatik 10 (Systemsimulation)

Autor(en) der externen Einrichtung(en)
Ludwig-Maximilians-Universität (LMU)
Technische Universität München (TUM)


Bauer, S., Huber, M., Ghelichkhan, S., Mohr, M., Rüde, U., & Wohlmuth, B.I. (2019). Large-scale simulation of mantle convection based on a new matrix-free approach. Journal of Computational Science, 31, 60--76.

Bauer, Simon, et al. "Large-scale simulation of mantle convection based on a new matrix-free approach." Journal of Computational Science 31 (2019): 60--76.


Zuletzt aktualisiert 2019-21-03 um 14:53