Structured quantum projectiles

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autor(en): Larocque H, Fickler R, Cohen E, Grillo V, Dunin-Borkowski RE, Leuchs G, Karimi E
Zeitschrift: Physical Review A
Jahr der Veröffentlichung: 2019
Band: 99
Heftnummer: 2
ISSN: 1050-2947
eISSN: 2469-9926


Matter wave interferometry is becoming an increasingly important technique in quantum metrology. However, unlike its photonic counterpart, this technique relies on the interference of particles possessing a nonzero rest mass and an electric charge. Matter waves can therefore experience alterations in their wavelike features while propagating through uniform fields to which a linear potential can be attributed, e.g., the Newtonian gravitational potential. Here, we derive the propagation kernel attributed to matter waves within such a potential. This kernel thereafter allows us to provide analytical formulations for structured matter waves subjected to a linear potential. Our formulations are in agreement with both the classical dynamics attributed to such waves and with previous interferometry experiments. Eigenbasis representations of structured matter waves are also introduced along with their application to enhanced interferometric measurements. Our results are not only relevant to matter wave interferometry, but also emphasize its fundamental differences with respect to photonic interferometry.

FAU-Autoren / FAU-Herausgeber

Leuchs, Gerd Prof. Dr.
Lehrstuhl für Experimentalphysik (Optik)

Autor(en) der externen Einrichtung(en)
Consiglio Nazionale delle Ricerche (CNR)
Forschungszentrum Jülich GmbH (FZJ)
University of Ottawa


Larocque, H., Fickler, R., Cohen, E., Grillo, V., Dunin-Borkowski, R.E., Leuchs, G., & Karimi, E. (2019). Structured quantum projectiles. Physical Review A, 99(2).

Larocque, Hugo, et al. "Structured quantum projectiles." Physical Review A 99.2 (2019).


Zuletzt aktualisiert 2019-20-03 um 11:53