Elucidating water dynamics in MgCl2 hydrates from molecular dynamics simulation

Journal article

Publication Details

Author(s): Huinink HP, Zahn D
Journal: Solid State Sciences
Publication year: 2017
Volume: 69
Pages range: 64-70
ISSN: 1293-2558


The water mobility in single crystals of MgCl2 hydrates has been investigated with molecular dynamics. Standard force fields have been benchmarked for molecular dynamics simulations of MgCl2 hydrates. To provide a reliable molecular mechanics model, force fields are selected on their ability to reproduce the structure of MgCl2·6H2O at 300 K. The selected force fields are then tested on their ability to also reproduce the structures of the different hydrates (n = 12, 8, 6, 4, 2, 1) and available thermodynamic data. For the currently best force-field available, constant-temperature, constant-pressure molecular dynamics simulations are preformed to elucidate the mechanisms of hydrate water mobility in perfect single crystals of the tetra- and hexahydrate. Long range water diffusion was not observed; each water molecule remained in the coordination sphere of its original Mg2+ host. However, collective ring-like motions of four water molecules at once within the coordination shell of a Magnesium ion were observed.

FAU Authors / FAU Editors

Zahn, Dirk Prof. Dr.
Professur für Theoretische Chemie

Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials

External institutions with authors

Eindhoven University of Technology / Technische Universiteit Eindhoven (TU/e)

Research Fields

A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials

How to cite

Huinink, H.P., & Zahn, D. (2017). Elucidating water dynamics in MgCl2 hydrates from molecular dynamics simulation. Solid State Sciences, 69, 64-70. https://dx.doi.org/10.1016/j.solidstatesciences.2017.05.011

Huinink, Hendrik Pieter, and Dirk Zahn. "Elucidating water dynamics in MgCl2 hydrates from molecular dynamics simulation." Solid State Sciences 69 (2017): 64-70.


Last updated on 2019-20-03 at 21:08