Industrially scalable and cost-effective Mn2+ doped ZnxCd1-xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autor(en): Levchuk I, Wuerth C, Krause F, Osvet A, Batentschuk M, Resch-Genger U, Kolbeck C, Herre P, Steinrück HP, Peukert W, Brabec C
Zeitschrift: Energy and Environmental Science
Jahr der Veröffentlichung: 2016
Band: 9
Heftnummer: 3
Seitenbereich: 1083-1094
ISSN: 1754-5692


Abstract

We present colloidally stable and highly luminescent ZnxCd1$-$xS:Mn/ZnS core--shell nanocrystals (NCs) synthesized via a simple non-injection one-pot, two-step synthetic route, which can be easily upscaled. A systematic variation of the reaction component, parameters and thickness of the ZnS shell yielded doped nanocrystals with a very high photoluminescence quantum yield (\textgreekFpl) of 70%, which is the highest value yet reported for these Mn-doped sulfide-semiconductor NCs. These materials can be synthesized with high reproducibility in large quantities of the same high quality, i.e., the same \textgreekFpl using accordingly optimized reaction conditions. The application of these zero-reabsorption high quality NCs in the light conversion layers, deposited on top of a commercial monocrystalline silicon (mono-Si) solar cell, led to a significant enhancement of the external quantum efficiency (EQE) of this device in the ultraviolet spectral region between 300 and 400 nm up to ca. 12%. EQE enhancement is reflected by an increase in the power conversion efficiency (PCE) by nearly 0.5 percentage points and approached the theoretical limit (0.6%) expected from down-shifting for this Si solar cell. The resulting PCE may result in a BoM (bill of materials) cost reduction of app. 3% for mono-Si photovoltaic modules. Such small but distinct improvements are expected to pave the road for an industrial application of doped semiconductor NCs as cost-effective light converters for silicon photovoltaic (PV) and other optoelectronic applications.


FAU-Autoren / FAU-Herausgeber

Batentschuk, Miroslaw PD Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Herre, Patrick
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Kolbeck, Claudia Dr.
Lehrstuhl für Physikalische Chemie II
Levchuk, Ievgen
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Osvet, Andres Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Peukert, Wolfgang Prof. Dr.-Ing.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Steinrück, Hans-Peter Prof. Dr.
Lehrstuhl für Physikalische Chemie II


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden


Autor(en) der externen Einrichtung(en)
Bundesanstalt für Materialforschung und -prüfung (BAM)


Zitierweisen

APA:
Levchuk, I., Wuerth, C., Krause, F., Osvet, A., Batentschuk, M., Resch-Genger, U.,... Brabec, C. (2016). Industrially scalable and cost-effective Mn2+ doped ZnxCd1-xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy and Environmental Science, 9(3), 1083-1094. https://dx.doi.org/10.1039/C5EE03165F

MLA:
Levchuk, Ievgen, et al. "Industrially scalable and cost-effective Mn2+ doped ZnxCd1-xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics." Energy and Environmental Science 9.3 (2016): 1083-1094.

BibTeX: 

Zuletzt aktualisiert 2019-15-03 um 08:38