Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond

Journal article


Publication Details

Author(s): Etzold B, Neitzel I, Kett M, Strobl F, Mochalin VN, Gogotsi Y
Journal: Chemistry of Materials
Publication year: 2014
Volume: 26
Journal issue: 11
Pages range: 3479-3484
ISSN: 0897-4756


Abstract

Diamond nanoparticles attract much attention as they combine outstanding mechanical properties with biocompatibility and are available in large quantities. Control and tunability of the particle size is very important for any nanomaterial. Although oxidation can burn carbon and lead to a particle size decrease, this technique could not be successfully employed for nanodiamond size reduction on the nanoscale. In this work, two commercial nanodiamond powders are used to demonstrate separation of the oxidation reaction into two steps (i) the oxygen chemisorption and (ii) the CO and/or CO2 desorption. This allows for an effective control of the oxidation process. In situ thermogravimetric analysis suggests that the oxidation is thermodynamically rather than kinetically controlled, and that the carbon burn off can be adjusted by repeating chemisorption/desorption steps to remove carbon layer after layer. Small-angle X-ray scattering (SAXS) characterization of the diamond nanoparticles showed a continuous size decrease from 5.2 to 4.8 nm during 15 layer-by-layer (LbL) oxidation cycles, in contrast to average particle size increase observed in the case of continuous oxidation in air. In accordance with the size decrease after LbL oxidation, the specific surface area (SSA) of the nanopowders increased.


FAU Authors / FAU Editors

Etzold, Bastian Prof. Dr.
Professur für Katalytische Materialien
Kett, Manfred
Lehrstuhl für Chemische Reaktionstechnik
Strobl, Florian
Lehrstuhl für Chemische Reaktionstechnik


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials


External institutions with authors

Drexel University


Research Fields

D Catalytic Materials
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Etzold, B., Neitzel, I., Kett, M., Strobl, F., Mochalin, V.N., & Gogotsi, Y. (2014). Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond. Chemistry of Materials, 26(11), 3479-3484. https://dx.doi.org/10.1021/cm500937r

MLA:
Etzold, Bastian, et al. "Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond." Chemistry of Materials 26.11 (2014): 3479-3484.

BibTeX: 

Last updated on 2019-13-03 at 20:08