Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9

Journal article

Publication Details

Author(s): Touska F, Turnquist B, Vlachova V, Reeh P, Leffler A, Zimmermann K
Journal: Journal of General Physiology
Publication year: 2018
Volume: 150
Journal issue: 8
Pages range: 1125-1144
ISSN: 0022-1295
eISSN: 1540-7748


Damage-sensing nociceptors in the skin provide an indispensable protective function thanks to their specialized ability to detect and transmit hot temperatures that would block or inflict irreversible damage in other mammalian neurons. Here we show that the exceptional capacity of skin C-fiber nociceptors to encode noxiously hot temperatures depends on two tetrodotoxin (TTX)-resistant sodium channel α-subunits: NaV1.8 and NaV1.9. We demonstrate that NaV1.9, which is commonly considered an amplifier of subthreshold depolarizations at 20°C, undergoes a large gain of function when temperatures rise to the pain threshold. We also show that this gain of function renders NaV1.9 capable of generating action potentials with a clear inflection point and positive overshoot. In the skin, heat-resistant nociceptors appear as two distinct types with unique and possibly specialized features: one is blocked by TTX and relies on NaV1.9, and the second type is insensitive to TTX and composed of both NaV1.8 and NaV1.9. Independent of rapidly gated TTX-sensitive NaV channels that form the action potential at pain threshold, NaV1.8 is required in all heat-resistant nociceptors to encode temperatures higher than ∼46°C, whereas NaV1.9 is crucial for shaping the action potential upstroke and keeping the NaV1.8 voltage threshold within reach.

FAU Authors / FAU Editors

Reeh, Peter Prof. Dr.
Professur für Physiologie
Zimmermann, Katharina Prof. Dr. med.
Heisenbergprofessur für Experimentelle Schmerzforschung

External institutions with authors

Bethel University
Medizinische Hochschule Hannover (MHH) / Hannover Medical School
The Czech Academy of Sciences

How to cite

Touska, F., Turnquist, B., Vlachova, V., Reeh, P., Leffler, A., & Zimmermann, K. (2018). Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9. Journal of General Physiology, 150(8), 1125-1144. https://dx.doi.org/10.1085/jgp.201711786

Touska, Filip, et al. "Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9." Journal of General Physiology 150.8 (2018): 1125-1144.


Last updated on 2019-21-06 at 10:02