Adaptions for Automotive Radar Based Occupancy Gridmaps

Conference contribution
(Conference Contribution)

Publication Details

Author(s): Prophet R, Stark H, Hoffmann M, Sturm C, Vossiek M
Publisher: IEEE
Publication year: 2018
Language: English


Environment models are necessary for autonomous driving. The distinction
between drivable and non-drivable underground is elementary. This paper
presents adaptions for radar based occupancy gridmaps, which are a
common representation of the environment. In contrast to standard
occupancy gridmaps or in general standard inverse radar sensor models,
our approach works with velocity dependent parameters and extends free
space calculations. Consequently, the map quality varies less and the
information content of the ego vehicle's immediate vicinity is higher.
Experiments with ground truth data show that the proposed algorithm
produces accurate environment models in urban scenes.

FAU Authors / FAU Editors

Hoffmann, Marcel
Lehrstuhl für Hochfrequenztechnik
Prophet, Robert
Lehrstuhl für Hochfrequenztechnik
Vossiek, Martin Prof. Dr.-Ing.
Lehrstuhl für Hochfrequenztechnik

External institutions
Valeo Schalter und Sensoren GmbH

How to cite

Prophet, R., Stark, H., Hoffmann, M., Sturm, C., & Vossiek, M. (2018). Adaptions for Automotive Radar Based Occupancy Gridmaps. Munich, DE: IEEE.

Prophet, Robert, et al. "Adaptions for Automotive Radar Based Occupancy Gridmaps." Proceedings of the IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM 2018), Munich IEEE, 2018.


Last updated on 2019-31-01 at 09:08

Share link