Understanding the Role of Surface Charge in Cellular Uptake and X‑ray-Induced ROS Enhancing of Au−Fe3O4 Nanoheterodimers

Journal article
(Original article)


Publication Details

Author(s): Klein S, Stiegler L, Harreiß C, Distel L, Neuhuber W, Spiecker E, Hirsch A, Kryschi C
Journal: ACS Applied Bio Materials
Publication year: 2018
Pages range: 2002-2011
ISSN: 2576-6422
Language: English


Abstract



Au−Fe3O4 nanoheterodimers were obtained by thermally
decomposing iron oleate on presynthesized gold nanoparticles. Water solubility as
well as surface charges were achieved by encapsulating the initially
hydrophobic Au−Fe3O4 nanoheterodimers in a self-assembled bilayer
shell formed either by 1-octadecylpyridinium, providing positive surface
charges, or by 4-dodecylbenzenesulfonate, yielding a negatively charged
surface. The surface charge and surface architecture were shown to control both
the cellular entry and the intracellular trafficking of the Au−Fe3O4 nanoheterodimers.
The positively charged (1-octylpyridinium-terminated) Au−Fe3O4 nanoheterodimers were internalized by both
breast cancer cells (MCF-7) and epithelial cells (MCF-10 A), wherein they were
electrostatically bound at the negatively charged membranes of the cell organelles
and, in particular, adsorbed onto the mitochondrial membrane. The treatment of
MCF-7 and MCF-10 cells with a fractional X-radiation dose of 1 Gy resulted into
a large increase of superoxide production, which arose from the Au−Fe3O4 nanoheterodimer-induced mitochondrial
depolarization. In contrast, the negatively charged (4-dodecylbenzenesulfonateterminated)
Au−Fe3O4 nanoheterodimers preferentially invaded the
cancerous MCF-7 cells by direct permeation. X-ray treatment of MCF-7 cells,
loaded with anionic Au−Fe3O4 nanoheterodimers,
yielded the increase of both hydroxyl radical and cytoplasmic superoxide
formation. The X-radiation-induced activation of the Fe3O4 surfaces, consisting of Fe2+ and Fe3+ cations,
triggered the catalysis of the hydroxyl radical production, whereas superoxide
formation presumably occurred through X-rayinduced photoelectron emission near
the Au surface. Since hydroxyl radicals are highly cytotoxic and the negatively
charged Au−Fe3O4 NHDs spare the healthy MCF-10A cells, these
Au−Fe3O4 nanoheterodimers exhibit a higher potential
for radiation therapy than the positively charged Au−Fe3O4 nanoheterodimers. Encouraging results from the
clonogenic cell survival assay and DMF calculations corroborate the excellent
performance of the anionic Au−Fe3O4 nanoheterodimers
as an X-ray dosage enhancer.


FAU Authors / FAU Editors

Distel, Luitpold Prof. Dr.
Strahlenklinik
Harreiß, Christina
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Hirsch, Andreas Prof. Dr.
Lehrstuhl für Organische Chemie II
Klein, Stefanie Dr.
Lehrstuhl für Physikalische Chemie I
Kryschi, Carola Prof. Dr.
Professur für Physikalische Chemie
Neuhuber, Winfried Prof. Dr.
Medizinische Fakultät
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Stiegler, Lisa
Lehrstuhl für Organische Chemie II


Additional Organisation
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


How to cite

APA:
Klein, S., Stiegler, L., Harreiß, C., Distel, L., Neuhuber, W., Spiecker, E.,... Kryschi, C. (2018). Understanding the Role of Surface Charge in Cellular Uptake and X‑ray-Induced ROS Enhancing of Au−Fe3O4 Nanoheterodimers. ACS Applied Bio Materials, 2002-2011. https://dx.doi.org/10.1021/acsabm.8b00511

MLA:
Klein, Stefanie, et al. "Understanding the Role of Surface Charge in Cellular Uptake and X‑ray-Induced ROS Enhancing of Au−Fe3O4 Nanoheterodimers." ACS Applied Bio Materials (2018): 2002-2011.

BibTeX: 

Last updated on 2019-09-01 at 15:08