Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes Na(V)1.9, Na(V)1.7 and Na(V)1.1

Journal article


Publication Details

Author(s): Touska F, Sattler S, Malsch P, Lewis RJ, Reeh P, Zimmermann K
Journal: Marine Drugs
Publication year: 2017
Volume: 15
Journal issue: 9
ISSN: 1660-3397


Abstract

Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53-75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) Na(V)1.9, but not Na(V)1.8 or Na(V)1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes Na(V)1.7 and Na(V)1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.


FAU Authors / FAU Editors

Reeh, Peter Prof. Dr.
Professur für Physiologie
Sattler, Simon
Lehrstuhl für Physiologie
Zimmermann, Katharina Prof. Dr. med.
Heisenbergprofessur für Experimentelle Schmerzforschung


External institutions with authors

University of Queensland


How to cite

APA:
Touska, F., Sattler, S., Malsch, P., Lewis, R.J., Reeh, P., & Zimmermann, K. (2017). Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes Na(V)1.9, Na(V)1.7 and Na(V)1.1. Marine Drugs, 15(9).

MLA:
Touska, Filip, et al. "Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes Na(V)1.9, Na(V)1.7 and Na(V)1.1." Marine Drugs 15.9 (2017).

BibTeX: 

Last updated on 2018-20-11 at 11:23