Pattern formation of a nonlocal, anisotropic interaction model

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autor(en): Burger M
Zeitschrift: Mathematical Models & Methods in Applied Sciences
Verlag: WORLD SCIENTIFIC PUBL CO PTE LTD
Jahr der Veröffentlichung: 2018
Band: 28
Heftnummer: 3
Seitenbereich: 409-451
ISSN: 0218-2025


Abstract

We consider a class of interacting particle models with anisotropic, repulsive-attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kucken-Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.


FAU-Autoren / FAU-Herausgeber

Burger, Martin Prof. Dr.
Lehrstuhl für Angewandte Mathematik

Zuletzt aktualisiert 2019-15-02 um 08:08